Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Nanoscale ; 14(46): 17315-17330, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36374496

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are notorious for their pathological characteristics of immunosuppression and their promoting effect on cancers. They can induce the formation of pre-metastatic niche (PMN) characterized by inflammation, immunosuppression and vascular leakage, and promote pulmonary metastasis of breast cancer. Herein, a tumor targeting c(RGDfk) peptide modified low molecular-weight-heparin-all-trans-retinoic-acid (LMWH-ATRA) micellar nanoparticle loaded with chemotherapeutic drug doxorubicin (DOX) and immune adjuvant α-galactosylceramide (αGC) (RLA/DOX/αGC NP) was developed. The hydrophilic segment LMWH inhibited the recruitment of MDSCs by competitively binding with P-selectin on the surface of vascular endothelial cells (VECs), while the hydrophobic segment ATRA promoted the depletion of MDSCs by inducing their differentiation. Through the modulation of MDSCs, micelles can significantly improve the inflammatory and immunosuppressive microenvironment of the lung and tumor sites, and inhibit the formation of PMN. Not only this, the micelles also produced a synergistic effect with αGC, which effectively improved the anti-tumor immunity of tumor bearing mice and provided a promising therapeutic strategy for breast cancer and pulmonary metastasis.


Subject(s)
Lung Neoplasms , Myeloid-Derived Suppressor Cells , Nanoparticles , Animals , Mice , Micelles , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Endothelial Cells , Lung Neoplasms/pathology , Doxorubicin/therapeutic use , Tretinoin , Tumor Microenvironment
2.
Arthritis Res Ther ; 24(1): 228, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207753

ABSTRACT

BACKGROUND: Adipose-derived mesenchymal stem cells (ASCs) have gained attention as a new treatment for systemic sclerosis (SSc). Low-molecular-weight heparin (LMWH) enhances cell function and stimulates the production of hepatocyte growth factor (HGF) in a variety of cells. This study investigated the effects of LMWH on the functions of mouse ASCs (mASCs), and the therapeutic effects of mASCs activated with LMWH (hep-mASCs) in mouse models of SSc. METHODS: The cellular functions of mASCs cultured with different concentrations of LMWH were determined. Mice were divided into four groups: bleomycin (BLM)-induced SSc (BLM-alone), BLM-induced SSc administered with mASCs (BLM-mASC), and BLM-induced SSc administered with mASCs activated with 10 or 100 µg/mL LMWH (BLM-hep-mASC); there were 9 mice per group (n = 9). Skin inflammation and fibrosis were evaluated using histological and biochemical examinations and gene expression levels. RESULTS: In vitro assays showed that migration ability and HGF production were significantly higher in hep-mASCs than in mASCs alone. The mRNA expression levels of cell migration factors were significantly upregulated in hep-mASCs compared to those in mASCs alone. The hep-mASCs accumulated in the skin tissues more than mASCs alone. The thickness of skin and hydroxyproline content in BLM-hep-mASC groups were significantly decreased, and the skin mRNA expression levels of interleukin-2, α-smooth muscle actin, transforming growth factor ß1, collagen type 1 alpha 1, and tissue inhibitor of metalloproteinase 2 were significantly downregulated compared to those in the BLM-alone group. CONCLUSIONS: hep-mASCs showed higher anti-inflammatory and anti-fibrotic effects than mASCs alone and may be a promising candidate for SSc treatment.


Subject(s)
Mesenchymal Stem Cells , Pulmonary Fibrosis , Scleroderma, Systemic , Actins/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Bleomycin/analogs & derivatives , Bleomycin/toxicity , Collagen/metabolism , Disease Models, Animal , Fibrosis , Heparin, Low-Molecular-Weight/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Hydroxyproline/metabolism , Interleukin-2/metabolism , Lung/pathology , Mesenchymal Stem Cells/metabolism , Mice , Organometallic Compounds , Pulmonary Fibrosis/metabolism , RNA, Messenger/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/pharmacology , Transforming Growth Factor beta1/metabolism
3.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35114109

ABSTRACT

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Subject(s)
Anticoagulants/pharmacology , Aptamers, Nucleotide/pharmacology , Blood Coagulation/drug effects , Factor V/antagonists & inhibitors , Factor Va/antagonists & inhibitors , Amino Acid Sequence , Anticoagulants/chemistry , Anticoagulants/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Base Pairing , Binding Sites , COVID-19/blood , Cell Membrane/chemistry , Cell Membrane/metabolism , Factor V/chemistry , Factor V/genetics , Factor V/metabolism , Factor Va/chemistry , Factor Va/genetics , Factor Va/metabolism , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Humans , Immune Sera/chemistry , Immune Sera/metabolism , Models, Molecular , Nucleic Acid Conformation , Protamines , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , SELEX Aptamer Technique , Substrate Specificity , COVID-19 Drug Treatment
4.
Allergy ; 77(7): 2104-2120, 2022 07.
Article in English | MEDLINE | ID: mdl-34995358

ABSTRACT

BACKGROUND: Organisms have orchestrated coagulation and immune systems. Although a link between inflammation and haemostasis has been reported in asthma, the interaction mechanism has not been completely elucidated. Here, we investigated the direct link between the mammalian immune and coagulation systems. METHODS: Mice were administered protease or antigens intranasally to induce airway inflammation with or without thrombin inhibitors treatment. The effects of thrombin and its inhibitors on interleukin (IL)-33 were investigated both in vivo and in vitro. Peripheral blood mononuclear cells (PBMCs) and plasma from asthma patients are collected to verify the correlation between thrombin and group 2 innate lymphocytes (ILC2s). RESULTS: Low-molecular-weight heparin (LMWH, an indirect inhibitor of thrombin) restrained both papain- and fungus-induced type 2 immune responses in mice by inhibiting IL-33 cleavage. Upon examining the potential thrombin protease consensus sites, we found that IL-33 was directly cleaved by thrombin at specific amino acids (R48 and R106) to generate a mature form of IL-33 with potent biological activity. In addition, we found that bivalirudin TFA (a direct inhibitor of thrombin) inhibited a variety of type 2 inflammatory responses, such as those in house dust mite (HDM)- and ovalbumin (OVA)-mediated pulmonary inflammation models. We found that plasma thrombin-antithrombin complex (TATc) levels in asthma patients were positively associated with the number and function of IL-33-responder group 2 innate lymphocytes (ILC2s) among peripheral blood mononuclear cells (PBMCs) from asthma patients. CONCLUSION: The data suggested that thrombin inhibitors administration could be effective in treating lung inflammation by regulating ILC2s via IL-33 maturation, indicating that targeting thrombin is a potential way to treat allergic diseases.


Subject(s)
Alveolitis, Extrinsic Allergic , Asthma , Pulmonary Eosinophilia , Animals , Cytokines/metabolism , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Immunity, Innate , Inflammation/metabolism , Interleukin-33/metabolism , Leukocytes, Mononuclear/metabolism , Lung , Lymphocytes , Mice , Thrombin/metabolism , Thrombin/pharmacology
5.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207476

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.


Subject(s)
COVID-19/pathology , Heparan Sulfate Proteoglycans/metabolism , SARS-CoV-2/metabolism , COVID-19/virology , Heparan Sulfate Proteoglycans/chemistry , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sulfotransferases/metabolism , Virus Diseases/drug therapy , Virus Diseases/pathology , Virus Diseases/virology , Virus Internalization/drug effects , COVID-19 Drug Treatment
6.
Thromb Haemost ; 121(7): 877-890, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33423243

ABSTRACT

NETosis is an innate immune response occurring after infection or inflammation: activated neutrophils expel decondensed DNA in complex with histones into the extracellular environment in a controlled manner. It activates coagulation and fuels the risk of thrombosis. Human pregnancy is associated with a mild proinflammatory state characterized by circulatory neutrophil activation which is further increased in complicated pregnancies, placenta-mediated complications being associated with an increased thrombotic risk. This aberrant activation leads to an increased release of nucleosomes in the blood flow. The aim of our study was to initially quantify nucleosome-bound histones in normal pregnancy and in placenta-mediated complication counterpart. We analyzed the role of histones on extravillous trophoblast function. Circulating nucleosome-bound histones H3 (Nu.QH3.1, Nu.QH3PanCit, Nu.QH3K27me3) and H4 (Nu.QH4K16Ac) were increased in complicated pregnancies. In vitro using the extravillous cell line HTR-8/SVNeo, we observed that free recombinant H2B, H3, and H4 inhibited migration in wound healing assay, but only H3 also blocked invasion in Matrigel-coated Transwell experiments. H3 and H4 also induced apoptosis, whereas H2B did not. Finally, the negative effects of H3 on invasion and apoptosis could be restored with enoxaparin, a low-molecular-weight heparin (LMWH), but not with aspirin. Different circulating nucleosome-bound histones are increased in complicated pregnancy and this would affect migration, invasion, and induce apoptosis of extravillous trophoblasts. Histones might be part of the link between the risk of thrombosis and pregnancy complications, with an effect of LMWH on both.


Subject(s)
Extracellular Traps , Histones/blood , Histones/metabolism , Placenta/metabolism , Pregnancy Complications/blood , Trophoblasts/metabolism , Adult , Apoptosis , Aspirin/metabolism , Cell Line , Cell Movement , Enoxaparin/metabolism , Female , France , Heparin, Low-Molecular-Weight/metabolism , Humans , Kinetics , Neutrophils , Nucleosomes/metabolism , Pilot Projects , Pre-Eclampsia/metabolism , Pregnancy , Prospective Studies , Young Adult
7.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008874

ABSTRACT

Although glycosaminoglycan (GAG)-protein interactions are important in many physiological and pathological processes, the structural requirements for binding are poorly defined. Starting with GAG-binding peptide CXCL9(74-103), peptides were designed to elucidate the contribution to the GAG-binding affinity of different: (1) GAG-binding motifs (i.e., BBXB and BBBXXB); (2) amino acids in GAG-binding motifs and linker sequences; and (3) numbers of GAG-binding motifs. The affinity of eight chemically synthesized peptides for various GAGs was determined by isothermal fluorescence titration (IFT). Moreover, the binding of peptides to cellular GAGs on Chinese hamster ovary (CHO) cells was assessed using flow cytometry with and without soluble GAGs. The repetition of GAG-binding motifs in the peptides contributed to a higher affinity for heparan sulfate (HS) in the IFT measurements. Furthermore, the presence of Gln residues in both GAG-binding motifs and linker sequences increased the affinity of trimer peptides for low-molecular-weight heparin (LMWH), partially desulfated (ds)LMWH and HS, but not for hyaluronic acid. In addition, the peptides bound to cellular GAGs with differential affinity, and the addition of soluble HS or heparin reduced the binding of CXCL9(74-103) to cellular GAGs. These results indicate that the affinity and specificity of peptides for GAGs can be tuned by adapting their amino acid sequence and their number of GAG-binding motifs.


Subject(s)
Heparin, Low-Molecular-Weight/metabolism , Heparitin Sulfate/metabolism , Peptides/chemistry , Animals , Binding Sites , CHO Cells , Cricetulus , Protein Binding
8.
PLoS One ; 15(10): e0239222, 2020.
Article in English | MEDLINE | ID: mdl-33001983

ABSTRACT

BACKGROUND: To prevent bio-accumulation of low molecular weight heparins (LMWHs) in patients with decreased kidney function, dosage reduction and anti-Xa monitoring has been suggested. The aim of this study was to investigate the effect of pre-emptive dosage reduction of LMWH on anti-Xa levels. Furthermore, we investigated the association between anti-Xa levels and bleeding, thrombotic events and mortality. METHODS: In this single center study, we followed 499 patients with decreased renal function in whom anti-Xa levels were measured. We observed how many patients had anti-Xa levels that fell within the reference range, with a standard protocol of a pre-emptive dosage reduction of LMWH (25% reduction in patients with an estimated glomerular filtration rate (eGFR) between 30 and 60 ml/min/1.73m2 and a reduction of 50% in patients with an eGFR below the 30 ml/min/1.73m2). Furthermore, Cox proportional hazard analyses were used to estimate hazard ratios to investigate the association between anti-Xa levels and major bleeding, thrombotic events and mortality within three months of follow-up. RESULTS: In a cohort of 499 patients (445 dalteparin and 54 nadroparin users), a pre-emptive dosage reduction of LMWH led to adequate levels of anti-Xa in only 19% of the patients (12% for the dalteparin users and 50% for nadroparin users). We did not find an association between anti-Xa levels and bleeding, thrombosis or mortality. CONCLUSION: Pre-emptive dosage reduction of LMWH leads to low anti-Xa levels in a large proportion, but this was not associated with bleeding, thrombosis or mortality.


Subject(s)
Factor Xa Inhibitors/metabolism , Heparin, Low-Molecular-Weight/adverse effects , Kidney/drug effects , Kidney/physiopathology , Aged , Cohort Studies , Dose-Response Relationship, Drug , Female , Hemorrhage/physiopathology , Heparin, Low-Molecular-Weight/metabolism , Humans , Male , Middle Aged , Thrombosis/physiopathology
9.
Clin Appl Thromb Hemost ; 26: 1076029620951851, 2020.
Article in English | MEDLINE | ID: mdl-33034200

ABSTRACT

Unfractionated heparin (UFH) is a sulfated glycosaminoglycan that consists of repeating disaccharides, containing iduronic acid (or glucuronic acid) and glucosamine, exhibiting variable degrees of sulfation. UFHs release tissue factor pathway inhibitor (TFPI) which inhibits the extrinsic pathway of coagulation by inactivating factor Xa and the factor VIIa/TF complex. Most heparins used clinically are derived from porcine intestinal mucosa however, heparins can also be derived from tissues of bovine and ovine origin. Currently there are some concerns about the shortage of the porcine heparins as they are widely used in the manufacturing of the low molecular weight heparins (LMWHs). Moreover, due to cultural and religious reasons in some countries, alternative sources of heparins are needed. Bovine mucosal heparins (BMH) are currently being developed for re-introduction to the US market for both medical and surgical indications. Compared to porcine mucosal heparin (PMH), BMH exhibits a somewhat weaker anti-coagulant activity. In this study, we determined the TFPI antigen level following administration of various dosages of UFHs from different origins. These studies demonstrated that IV administration of equigravemetric dosages of PMH and ovine mucosal heparin (OMH) to non-human primates resulted in comparable TFPI antigen release from endothelial cells. In addition, the levels of TFPI were significantly higher than TFPI antigen levels observed after BMH administration. Potency adjusted dosing resulted in comparable TFPI release profiles for all 3 heparins. Therefore, such dosing may provide uniform levels of anticoagulation for the parenteral indications for UFHs. These observations warrant further clinical validation in specific indications.


Subject(s)
Heparin, Low-Molecular-Weight/metabolism , Administration, Intravenous , Animals , Cattle , Haplorhini , Humans , Primates , Sheep , Swine
10.
EBioMedicine ; 59: 102969, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32853989

ABSTRACT

Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include: (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Heparin/therapeutic use , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Heparin/metabolism , Heparin/pharmacology , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Histones/blood , Histones/metabolism , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Internalization/drug effects
11.
Carbohydr Polym ; 246: 116660, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747292

ABSTRACT

Low molecular weight heparin (LMWH) is reported to have therapeutic action on ulcerative colitis (UC). To facilitate its oral administration and improve the colon-targeting property, LMWH-loaded nanoparticles (TMC-NPs and SA-TMC-NPs) are prepared and evaluated by a series of studies, including their stabilities, drug release profiles, mucosal permeation, mucoadhesion, cytotoxicities, cellular uptake profiles, anticoagulant and anti-inflammatory activities, mucosal healing properties, biosafety and ameliorative effects on experimental colitis. Consequently, oral administration of LMWH-loaded NPs for 5 days perform significant therapeutic effects on mice, which are manifested as improved body weight gains, colon length, DAI score, MPO activity and histological characteristics. Besides, SA-TMC-NPs show better colon-targeting property than TMC-NPs that is demonstrated by lower oral absorption (ATPP 38.95 s) and stronger mucoadhesion (kcps reduces 36.46 %) to inflamed colon tissues. Therefore, TMC-based NPs are proved to be as promising oral colon-targeting drug delivery systems of LMWH and has potential application in UC treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chitosan/chemistry , Colitis/drug therapy , Drug Delivery Systems/methods , Heparin, Low-Molecular-Weight/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents/metabolism , Biomarkers/metabolism , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Drug Liberation , Gene Expression , Heparin, Low-Molecular-Weight/metabolism , Kinetics , Male , Mice , Nanoparticles , Peroxidase/genetics , Peroxidase/metabolism , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Treatment Outcome , Trinitrobenzenesulfonic Acid/toxicity
12.
J Biol Chem ; 295(10): 2974-2983, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31974166

ABSTRACT

Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.


Subject(s)
Heparin, Low-Molecular-Weight/metabolism , tau Proteins/metabolism , Animals , HEK293 Cells , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Hippocampus/metabolism , Humans , Mice , Neurons/metabolism , Partial Thromboplastin Time , Prion Diseases/metabolism , Prion Diseases/pathology , Protein Aggregates/drug effects , Protein Binding , Prothrombin Time , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , tau Proteins/chemistry , tau Proteins/genetics
13.
J Pharmacol Exp Ther ; 373(1): 51-61, 2020 04.
Article in English | MEDLINE | ID: mdl-31937564

ABSTRACT

Bleeding resulting from the application of low-molecular-weight heparins (LMWHs) may be treated with protamine sulfate, but this treatment lacks efficiency; its action against antifactor Xa activity is limited to ∼60%. Moreover, protamine sulfate can cause life-threatening hypersensitivity reactions. We developed diblock heparin-binding copolymer (HBC), which can neutralize the anticoagulant activity of parenteral anticoagulants. In the present study, we explored the safety profile of HBC and its potential to reverse enoxaparin, nadroparin, dalteparin, and tinzaparin in human plasma and at in vivo conditions. HBC-LMWH complexes were characterized using zeta potential, isothermal titration calorimetry, and dynamic light scattering. The rat cardiomyocytes and human endothelial cells were used for the assessment of in vitro toxicity. Male Wistar rats were observed for up to 4 days after HBC administration for clinical evaluation, gross necropsy, and biochemistry and histopathological analysis. Rats were treated with LMWHs alone or followed by short-time intravenous infusion of HBC, and bleeding time and antifactor Xa activity were measured. HBC completely reversed antifactor Xa activity prolonged in vitro by all LMWHs with an optimal weight ratio of 2.5:1. The complexes of HBC-LMWHs were below 5 µm. We observed no effects on the viability of cardiovascular cells treated with HBC at concentrations up to 0.05 mg/ml. Single doses up to 20 mg/kg of HBC were well tolerated by rats. HBC completely reversed the effects of LMWHs on bleeding time and antifactor Xa activity in vivo after 20 minutes and retained ∼80% and ∼60% of reversal activity after 1 and 2 hours, respectively. Well-documented efficacy and safety of HBC both in vitro and in vivo make this polymer a promising candidate for LMWHs reversal. SIGNIFICANCE STATEMENT: Over the last decade, there has been significant progress in developing antidotes for the reversal of anticoagulants. Until now, there has been no effective and safe treatment for patients with severe bleeding under low-molecular-weight heparin therapy. Based on our in vitro and in vivo studies, heparin-binding copolymer seems to be a promising candidate for neutralizing all clinically relevant low-molecular-weight heparins.


Subject(s)
Anticoagulants/metabolism , Antidotes/metabolism , Hemorrhage/metabolism , Heparin, Low-Molecular-Weight/metabolism , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Antidotes/pharmacology , Antidotes/therapeutic use , Dose-Response Relationship, Drug , Factor Xa/metabolism , Hemorrhage/prevention & control , Heparin/adverse effects , Heparin/metabolism , Heparin, Low-Molecular-Weight/adverse effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Protein Binding/drug effects , Protein Binding/physiology , Random Allocation , Rats , Rats, Wistar
14.
Biochem Med (Zagreb) ; 30(1): 010702, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31839722

ABSTRACT

INTRODUCTION: Clinical application of rivaroxaban and apixaban does not require therapeutic monitoring. Commercial anti-activated factor X (anti-FXa) inhibition methods for all anti-FXa drugs are based on the same principle, so there are attempts to evaluate potential clinical application of heparin-calibrated anti-FXa assay as an alternative method for direct FXa inhibitors. We aimed to evaluate relationship between anti-FXa methods calibrated with low molecular weight heparin (LMWH) and with drug specific calibrators, and to determine whether commercial LMWH anti-FXa assay can be used to exclude the presence of clinically relevant concentrations of rivaroxaban and apixaban. MATERIALS AND METHODS: Low molecular weight heparin calibrated reagent (Siemens Healthineers, Marburg, Germany) was used for anti-FXa activity measurement. Innovance heparin (Siemens Healthineers, Marburg, Germany) calibrated with rivaroxaban and apixaban calibrators (Hyphen BioMed, Neuville-sur-Oise, France) was used for quantitative determination of FXa inhibitors. RESULTS: Analysis showed good agreement between LMWH calibrated and rivaroxaban calibrated activity (κ = 0.76) and very good agreement with apixaban calibrated anti-Xa activity (κ = 0.82), respectively. Low molecular weight heparin anti-FXa activity cut-off values of 0.05 IU/mL and 0.1 IU/mL are suitable for excluding the presence of clinically relevant concentrations (< 30 ng/mL) of rivaroxaban and apixaban, respectively. Concentrations above 300 ng/mL exceeded upper measurement range for LMWH anti-FXa assay and cannot be determined by this method. CONCLUSION: Low molecular weight heparin anti-FXa assay can be used in emergency clinical conditions for ruling out the presence of clinically relevant concentrations of rivaroxaban and apixaban. However, use of LMWH anti-FXa assay is not appropriate for their quantitative determination as an interchangeable method.


Subject(s)
Anticoagulants/chemistry , Blood Coagulation Tests/methods , Heparin, Low-Molecular-Weight/chemistry , Pyrazoles/chemistry , Pyridones/chemistry , Rivaroxaban/chemistry , Anticoagulants/metabolism , Area Under Curve , Blood Coagulation Tests/standards , Calibration , Chromogenic Compounds/chemistry , Factor Xa/chemistry , Factor Xa/metabolism , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/metabolism , Heparin, Low-Molecular-Weight/metabolism , Humans , Pyrazoles/metabolism , Pyridones/metabolism , ROC Curve
15.
Sci Rep ; 9(1): 6482, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019210

ABSTRACT

Arterial/venous thrombosis is the major cardiovascular disorder accountable for substantial mortality; and the current demand for antithrombotic agents is extensive. Heparinases depolymerize unfractionated heparin (UFH) for the production of low molecular-weight heparins (LMWHs; used as anticoagulants against thrombosis). A microbial strain of Streptomyces sp. showing antithrombotic activity was isolated from the soil sample collected from north India. The strain was characterized by using 16S rRNA homology technique and identified as Streptomyces variabilis MTCC 12266 capable of producing heparinase enzyme. This is the very first communication reporting Streptomyces genus as the producer of heparinase. It was observed that the production of intracellular heparinase was [63.8 U/mg protein (specific activity)] 1.58 folds higher compared to extracellular heparinase [40.28 U/mg protein]. DEAE-Sephadex A-50 column followed by Sepharose-6B column purification of the crude protein resulted 19.18 folds purified heparinase. SDS-PAGE analysis of heparinase resulted an estimated molecular-weight of 42 kDa. It was also found that intracellular heparinase has the ability to depolymerize heparin to generate LMWHs. Further studies related to the mechanistic action, structural details, and genomics involved in heparinase production from Streptomyces variabilis are warranted for large scale production/purification optimization of heparinase for antithrombotic applications.


Subject(s)
Bacterial Proteins/metabolism , Heparin Lyase/metabolism , Heparin, Low-Molecular-Weight/metabolism , Heparin/metabolism , Streptomyces/metabolism , Bacterial Proteins/isolation & purification , Chromatography/methods , DEAE-Dextran/analogs & derivatives , Electrophoresis, Polyacrylamide Gel , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Heparin/chemistry , Heparin Lyase/isolation & purification , Heparin, Low-Molecular-Weight/chemistry , India , Kinetics , Molecular Weight , Phylogeny , RNA, Ribosomal, 16S/genetics , Sepharose , Soil Microbiology , Streptomyces/classification , Streptomyces/genetics , Substrate Specificity
16.
Med Chem ; 15(5): 486-495, 2019.
Article in English | MEDLINE | ID: mdl-30569872

ABSTRACT

BACKGROUND: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


Subject(s)
Heparin, Low-Molecular-Weight/metabolism , Sialyltransferases/antagonists & inhibitors , Sialyltransferases/metabolism , Amino Acid Sequence , Binding Sites , Carbon-13 Magnetic Resonance Spectroscopy , Circular Dichroism , Humans , Protein Binding , Protein Domains , Proton Magnetic Resonance Spectroscopy , Sialic Acids/metabolism , Sialyltransferases/chemistry , Spectrometry, Fluorescence
17.
J Pharm Biomed Anal ; 153: 168-174, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29494889

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is regarded as one of the most powerful and versatile analytical approaches to assure the quality of heparin preparations. In particular, it was recently demonstrated that by using 1H NMR coupled with chemometrics heparin and low molecular weight heparin (LMWH) samples derived from three major animal species (porcine, ovine and bovine) can be differentiated [Y.B. Monakhova et al. J. Pharm. Anal. 149 (2018) 114-119]. In this study, significant improvement of existing chemometric models was achieved by switching to 2D NMR experiments (heteronuclear multiple-quantum correlation (HMQC) and diffusion-ordered spectroscopy (DOSY)). Two representative data sets (sixty-nine heparin and twenty-two LMWH) belonged to different batches and distributed by different commercial companies were investigated. A trend for animal species differentiation was observed in the principal component analysis (PCA) score plot built based on the DOSY data. A superior model was constructed using HMQC experiments, where individual heparin (LMWH) clusters as well as their blends were clearly differentiated. The predictive power of different classification methods as well as unsupervised techniques (independent components analysis, ICA) clearly proved applicability of the model for routine heparin and LMWH analysis. The switch from 1D to 2D NMR techniques provides a wealth of additional information, which is beneficial for multivariate modeling of NMR spectroscopic data for heparin preparations.


Subject(s)
Heparin, Low-Molecular-Weight/metabolism , Animals , Cattle , Diffusion , Magnetic Resonance Spectroscopy/methods , Principal Component Analysis/methods , Quality Control , Reproducibility of Results , Sheep , Swine
18.
Cancer Lett ; 415: 187-197, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29225052

ABSTRACT

Synovial sarcoma (SS) is an aggressive tumor with propensity for lung metastases which significantly impact patients' prognosis. New therapeutic approaches are needed to improve treatment outcome. Targeting the heparanase/heparan sulfate proteoglycan system by heparin derivatives which act as heparanase inhibitors/heparan sulfate mimetics is emerging as a therapeutic approach that can sensitize the tumor response to chemotherapy. We investigated the therapeutic potential of a supersulfated low molecular weight heparin (ssLMWH) in preclinical models of SS. ssLMWH showed a potent anti-heparanase activity, dose-dependently inhibited SS colony growth and cell invasion, and downregulated the activation of receptor tyrosine kinases including IGF1R and IR. The combination of ssLMWH and the IGF1R/IR inhibitor BMS754807 synergistically inhibited proliferation of cells exhibiting IGF1R hyperactivation, also abrogating cell motility and promoting apoptosis in association with PI3K/AKT pathway inhibition. The drug combination strongly enhanced the antitumor effect against the CME-1 model, as compared to single agent treatment, abrogating orthotopic tumor growth and significantly repressing spontaneous lung metastatic dissemination in treated mice. These findings provide a strong preclinical rationale for developing drug regimens combining heparanase inhibitors/HS mimetics with IGF1R antagonists for treatment of metastatic SS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , Pyrazoles/pharmacology , Receptors, Somatomedin/antagonists & inhibitors , Sarcoma, Synovial/drug therapy , Triazines/pharmacology , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Heparin, Low-Molecular-Weight/administration & dosage , Heparin, Low-Molecular-Weight/metabolism , Humans , Mice, SCID , Neoplasm Metastasis , Pyrazoles/administration & dosage , Receptor, IGF Type 1 , Receptors, Somatomedin/metabolism , Sarcoma, Synovial/metabolism , Sarcoma, Synovial/pathology , Sulfates , Triazines/administration & dosage
19.
Carbohydr Polym ; 177: 297-305, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28962771

ABSTRACT

Using chitin-affinity interaction between triple-functional heparinase I (Hep I) and chitin, an engineered platform was prepared to produce controllable low molecular weight heparin (LMWH). Chitin microspheres with well-defined nanofibrils were fabricated through a "bottom up" pathway. An enhanced soluble protein, ChBD-SUMO-Hep I (CSH-I), was expressed in 3L batch fermentation with a high bioactivity of 2.5×103 IU/L. Chitin binding domain (ChBD) can specifically bind to chitin in noncovalent way, which leads to the immobilization and purification of enzyme in a single step. The immobilized CSH-I was preferred over its free counterpart due to its higher tolerance to heat and pH, as well as improved shelf-life. The restraint enzyme could be reused up to 8 times to achieve a conversion yield exceeding 90%. By using the bioinspired conjugates, the qualified LMWH fractions were obtained by monitoring the degradation process with an absorbance range of 44.5-68.3 at 232nm.


Subject(s)
Chitin , Enzymes, Immobilized/metabolism , Heparin Lyase/metabolism , Heparin, Low-Molecular-Weight/metabolism , Fermentation , Hot Temperature
20.
J Mol Biol ; 429(16): 2449-2462, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28697887

ABSTRACT

The Aß peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aß40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aß40 fibrils in alternative structures, Aß42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Heparin, Low-Molecular-Weight/metabolism , Peptide Fragments/metabolism , Amyloid beta-Peptides/genetics , DNA Mutational Analysis , Humans , Magnetic Resonance Spectroscopy , Mutant Proteins/genetics , Mutant Proteins/metabolism , Peptide Fragments/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...