ABSTRACT
BACKGROUND: The glycocalyx layer is a key structure in the endothelium. Tourniquet-induced ischemic periods are used during orthopedic surgery, and the reactive oxygen species generated after ischemia-reperfusion may mediate the shedding of the glycocalyx. Here, we describe the effects of tourniquet-induced ischemia-reperfusion and compare the effects of sevoflurane and propofol on the release of endothelial biomarkers after ischemia-reperfusion in knee-ligament surgery. METHODS: This pilot, single-center, blinded, randomized, controlled trial included 16 healthy patients. After spinal anesthesia, hypnosis was achieved with sevoflurane or propofol according to randomization. During the perioperative period, five venous blood samples were collected for quantification of syndecan-1, heparan sulfate, and thrombomodulin from blood serum by using ELISA assays kits. Sample size calculation was performed to detect a 25% change in the mean concentration of syndecan-1 with an alpha of 0.05 and power of 80%. RESULTS: For our primary outcome, a two-way ANOVA with post-hoc Bonferroni correction analysis showed no differences in syndecan-1 concentrations between the sevoflurane and propofol groups at any time point. In the sevoflurane group, we noted an increase in syndecan-1 concentrations 90 min after tourniquet release in the sevoflurane group from 34.6 ± 24.4 ng/mL to 47.9 ± 29.8 ng/mL (Wilcoxon test, p < 0.01) that was not observed in patients randomized to the propofol group. The two-way ANOVA showed no intergroup differences in heparan sulfate and thrombomodulin levels. CONCLUSIONS: Superficial endothelial damage without alterations in the cell layer integrity was observed after tourniquet knee-ligament surgery. There was no elevation in serum endothelial biomarkers in the propofol group patients. Sevoflurane did not show the protective effect observed in in vitro and in vivo studies. TRIAL REGISTRATION: The trial was registered in www.clinicaltrials.gov (ref: NCT03772054, Registered 11 December 2018).
Subject(s)
Endothelium/drug effects , Knee/surgery , Ligaments/surgery , Propofol/pharmacology , Sevoflurane/pharmacology , Tourniquets/adverse effects , Adult , Endothelium/chemistry , Glycocalyx/drug effects , Heparitin Sulfate/blood , Humans , Pilot Projects , Reperfusion Injury/prevention & control , Syndecan-1/bloodABSTRACT
Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML. MATERIAL AND METHODS: In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I=16; MPS II=21; MPS III=40; MPS IV=32; MPS VI=10; MPS VII=1; ML=4), and compared them with 115 age-matched controls. Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Subsequently, dermatan sulfate (DS), heparan sulfate (HS-0S, HS-NS), and keratan sulfate (mono-sulfated KS, di-sulfated KS, and ratio of di-sulfated KS in total KS) were measured by MS/MS. RESULTS: Untreated patients with MPS I, II, VI, and ML had higher levels of DS compared to control samples. Untreated patients with MPS I, II, III, VI, and ML had higher levels of HS-0S; and untreated patients with MPS II, III and VI and ML had higher levels of HS-NS. Levels of KS were age dependent, so although levels of both mono-sulfated KS and di-sulfated KS were generally higher in patients, particularly for MPS II and MPS IV, age group numbers were not sufficient to determine significance of such changes. However, the ratio of di-sulfated KS in total KS was significantly higher in all MPS patients younger than 5years old, compared to age-matched controls. MPS I and VI patients treated with HSCT had normal levels of DS, and MPS I, VI, and VII treated with ERT or HSCT had normal levels of HS-0S and HS-NS, indicating that both treatments are effective in decreasing blood GAG levels. CONCLUSION: Measurement of GAG levels in DBS is useful for diagnosis and potentially for monitoring the therapeutic efficacy in MPS.