Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 501-507, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952089

ABSTRACT

Objective To investigate the effects of astragaloside IV(AS-IV) on the balance of T helper type 1 (Th1) and Th2 cells in mice with IgA nephropathy (IgAN) and its possible mechanism. Methods The IgAN model of BALB/c mice was established. Successfully modeled mice were randomly divided into four groups: model, AS-IV low dose, AS-IV medium dose and AS-IV high dose groups, with 10 mice in each group. Another 10 mice served as the control group. Mice in the low, medium and high dose groups were administered 12.5, 25 and 50 mg/kg AS-IV suspension (prepared in normal saline) by gavage, while the control and model groups were given an equivalent volume of normal saline. The 24-hour urinary protein (24 h UPr) content and urine red blood cell count were measured in each group. The levels of blood urea nitrogen (BUN), serum creatinine (Scr) and albumin (ALB) were determined. Serum interferon γ (IFN-γ), interleukin 4 (IL-4) and IL-10 levels were detected by ELISA. The ratio of Th1/Th2 cells in peripheral blood of mice was detected using flow cytometry. Histopathological changes in the kidney of mice were observed by HE staining. RT-PCR and Western blot were used to detect the mRNA and protein expressions of T cell immunoglobulin and mucin domain gene 1 (TIM-1), Toll-like receptor 4 (TLR4) in mouse kidney tissue. Results Compared with the model group, in weeks 12 and 15, the urine red blood cell count, 24 h UPr, BUN, Scr, levels of IL-4 and IL-10, the proportion of Th2 cells, as well as the mRNA and protein expression levels of TIM-1 and TLR4 were significantly decreased in the low, medium and high dose groups of AS-IV, and the levels of ALB, IFN-γ, the proportion of Th1 cells and Th1/Th2 cell ratio were increased, with the high-dose group showing the best effects. Conclusion AS-IV can inhibit TIM-1 signaling pathway, increase the Th1/Th2 cell ratio, inhibit the inflammatory reaction, and alleviate the renal injury in IgAN mice.


Subject(s)
Glomerulonephritis, IGA , Hepatitis A Virus Cellular Receptor 1 , Mice, Inbred BALB C , Saponins , Signal Transduction , Th1 Cells , Th2 Cells , Triterpenes , Animals , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Triterpenes/pharmacology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/immunology , Saponins/pharmacology , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Signal Transduction/drug effects , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Interleukin-4/genetics , Interleukin-4/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interferon-gamma/metabolism , Interferon-gamma/genetics , Male , Female
2.
Sci Rep ; 14(1): 13068, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844495

ABSTRACT

Diabetic nephropathy represents one of the main long-term complications in T2DM patients. Cigarette smoking represents one of modifiable renal risk factors to kidney damage due to lead (Pb) exposure in these patients. Our goal is to investigate serum copeptin and Kidney injury molecule-1 (KIM-1) and urinary lead (UPb) in type 2 diabetes mellitus (T2DM) patients even smokers and non-smokers groups and compared to corresponding health controls and assess its associations with Angiotensin-Converting enzyme Insertion/Deletion polymorphism [ACE (I/D)] polymorphism in diabetic nephropathy progression in those patients. In present study, 106 T2DM patients and 102 healthy control individuals were enrolled. Serum glucose, copeptin, KIM-1, total cholesterol (TChol), triglycerides (TG), estimated glomerular filtration rate (eGFR) and UPb levels and ACE (I/D) polymorphisms were assessed in both groups. Results mentioned to significant variations in all parameters compared to in T2DM group compared to control group. Serum copeptin and UPb demonstrated significant difference in diabetic smokers (DS) and diabetic non-smokers (DNS) groups while KIM-1 exhibited significant change between DNS and healthy control non-smokers (CNS) groups. Positive relation was recorded between serum glucose and KIM-1 while negative one was found between serum copeptin and TChol. D allele was associated with significant variation in most parameters in T2DM, especially insertion/deletion (ID) polymorphism. ROC curve analysis (AUC) for serum copeptin was 0.8, p < 0.044 and for Kim-1 was 0.54, p = 0.13 while for uPb was 0.71, p < 0.033. Serum copeptin and UPb might be a prognostic biomarker for renal function decline in smoker T2DM patients while KIM-1 was potent marker in non-smoker T2DM with association with D allele of ACE I/D gene polymorphism.


Subject(s)
Diabetes Mellitus, Type 2 , Glycopeptides , Hepatitis A Virus Cellular Receptor 1 , Peptidyl-Dipeptidase A , Polymorphism, Genetic , Humans , Male , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/blood , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Glycopeptides/blood , Middle Aged , Hepatitis A Virus Cellular Receptor 1/genetics , Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , INDEL Mutation , Smokers , Case-Control Studies , Adult , Genetic Predisposition to Disease , Glomerular Filtration Rate , Biomarkers/blood , ROC Curve
3.
Front Immunol ; 15: 1360219, 2024.
Article in English | MEDLINE | ID: mdl-38745667

ABSTRACT

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Subject(s)
B-Lymphocytes, Regulatory , Hepatitis A Virus Cellular Receptor 1 , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Female , Male , Adult , Memory B Cells/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Cytokines/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Lymphocyte Activation/immunology , Middle Aged , Cells, Cultured , Cell Differentiation/immunology , Immunologic Memory
4.
BMC Nephrol ; 23(1): 254, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843953

ABSTRACT

BACKGROUND: Human Kidney Injury Molecule-1, also known as HAVCR-1 (Hepatitis A virus cellular receptor 1), belongs to the cell-surface protein of immunoglobulin superfamily involved in the phagocytosis by acting as scavenger receptor epithelial cells. The study focused on pinpointing the mechanisms and genes that interact with KIM-1. METHODS: This in-silico study was done from March 2019 to December 2019. The Enrichment and protein-protein interaction (PPI) network carefully choose proteins. In addition, the diagramed gene data sets were accomplished using FunRich version 3.1.3. It was done to unveil the proteins that may affect the regulation of HAVCR1 or may be regulated by this protein. These genes were then further considered in pathway analysis to discover the dysregulated pathways in diabetic nephropathy. The long list of differentially expressed genes is meaningless without pathway analysis. RESULTS: Critical pathways that are dysregulated in diabetic nephropathy patients have been identified. These include Immune System (Total = 237, P < 0.05), Innate Immune System (Total = 140, P < 0.05), Cytokine Signaling Immune system (Total = 116, P < 0.05), Adaptive Immune System (Total = 85) and Neutrophil degranulation (Total = 78). CONCLUSION: The top 5 genes that are interacting directly with HIVCR1 include CASP3, CCL2, SPP1, B2M, and TIMP1 with degrees 161, 144, 108, 107, and 105 respectively for Immune system pathways (Innate Immune System, Cytokine Signaling Immune system, Adaptive Immune System and Neutrophil degranulation).


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Hepatitis A Virus Cellular Receptor 1 , Computational Biology , Cytokines/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Gene Expression Profiling , Hepatitis A Virus Cellular Receptor 1/genetics , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Phagocytosis , Protein Interaction Maps
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166296, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34718120

ABSTRACT

Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-ß, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-ß, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.


Subject(s)
Benzhydryl Compounds/toxicity , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Kidney/drug effects , Phenols/toxicity , Animals , Apoptosis/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/pathology , Female , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Kidney/pathology , Lipocalin-2/genetics , Male , Mice , Sex Characteristics
6.
Mol Med ; 27(1): 143, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34736391

ABSTRACT

BACKGROUND: LncRNA-ATB is a long noncoding RNA (lncRNA) activated by transforming growth factor ß (TGF-ß) and it has important biological functions in tumours and nontumour diseases. Meanwhile, TGF-ß is the most critical regulatory factor in the process of nephrotic fibrosis and calcium oxalate (CaOx) crystal-induced renal injury. The present study aimed to investigate the biological function and mechanism of lncRNA-ATB in CaOx crystal-induced renal injury. METHODS: The expression level of lncRNA-ATB was detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), the expression levels of epithelial-mesenchymal transition (EMT) markers, TGF-ß1 and Kidney Injury Molecule-1 (KIM-1) were detected by qRT-PCR, immunofluorescence staining or western blot analysis, cell proliferation was measured with a CCK-8 kit, cell apoptosis was measured by flow cytometry and TUNEL staining, and cell injury was detected with the Cytotoxicity lactate dehydrogenase (LDH) Assay kit and the expression level of KIM-1. RESULTS: The expression levels of lncRNA-ATB and TGF-ß1 were significantly increased in HK-2 cells after coincubation with calcium oxalate monohydrate (COM). COM stimulation caused significant injury in the HK-2 cells, induced cell apoptosis, inhibited cell proliferation, and induced EMT changes. After COM stimulation, the expression levels of the epithelial cell markers E-cadherin and zonula occludens (ZO)-1 in HK-2 cells significantly decreased, whereas the levels of the mesenchymal cell markers N-cadherin, vimentin and α-smooth muscle actin (α-SMA) significantly increased. Interference with lncRNA-ATB expression significantly relieved the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT changes. The expression levels of the microRNA-200 (miR-200) family in the HK-2 cells after coincubation with COM were significantly decreased. MiR-200a mimics relieved the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT changes, whereas miR-200a inhibitors abolished the lncRNA-ATB interference-induced relief of the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT. CONCLUSION: LncRNA-ATB promoted the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT to participate in the process of CaOx crystal-induced renal injury by sponging miR-200s.


Subject(s)
Calcium Oxalate , Kidney Calculi/genetics , MicroRNAs , RNA, Long Noncoding , Apoptosis , Cell Line , Cell Proliferation , Epithelial-Mesenchymal Transition , Hepatitis A Virus Cellular Receptor 1/genetics , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Kidney Calculi/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
7.
Eur Rev Med Pharmacol Sci ; 25(17): 5436-5447, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34533819

ABSTRACT

OBJECTIVE: By creating nephrotoxicity models with cisplatin, vancomycin, and gentamicin in HK-2 (human renal proximal tubule cell) and HEK293T (human embryonic kidney epithelial cells) cell lines, we aimed to evaluate the effect of cilastatin on recovery of cell damage after toxicity had occurred. MATERIALS AND METHODS: In the first phase of the study, the doses of cisplatin, vancomycin, and gentamicin (50% inhibitive concentration; IC50) were determined. In the second phase, the effective dose of cilastatin against these drugs was determined, and IC50 doses of nephrotoxic agents were administered simultaneously. In the third phase of our study, to evaluate the possible therapeutic effect of cilastatin after toxicity had occurred, the analyses of cell viability, apoptosis, oxidative stress, expression of kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) were performed. RESULTS: In the second phase of the study, it was observed that cilastatin increased cell viability when treated simultaneously with a nephrotoxic agent. In the third phase, cilastatin provided a significant increase in cell viability. After treatment with each agent for 24 hours, we determined that adding cilastatin to the medium had an effect on the recovery of cell damage by increasing cell viability and reducing apoptosis and oxidative stress. The expression of KIM-1 and NGAL increased when nephrotoxicity occurred and decreased with the addition of cilastatin to the medium. CONCLUSIONS: The findings of the study suggest that cilastatin may have a healing effect after the development of nephrotoxicity.


Subject(s)
Cell Survival/drug effects , Cilastatin/pharmacology , Kidney Diseases/prevention & control , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Line , Cilastatin/administration & dosage , Cisplatin/administration & dosage , Cisplatin/toxicity , Dose-Response Relationship, Drug , Gentamicins/administration & dosage , Gentamicins/toxicity , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Inhibitory Concentration 50 , Kidney Diseases/chemically induced , Lipocalin-2/genetics , Vancomycin/administration & dosage , Vancomycin/toxicity
8.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359995

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.


Subject(s)
Chikungunya virus/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Host-Pathogen Interactions/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Virus/genetics , Virus Internalization , Animals , Antibodies, Monoclonal/pharmacology , CHO Cells , Cell Line , Cell Line, Tumor , Chikungunya virus/drug effects , Chikungunya virus/growth & development , Chikungunya virus/immunology , Chlorocebus aethiops , Cricetulus , Endosomes/drug effects , Endosomes/immunology , Endosomes/metabolism , Epithelial Cells/immunology , Epithelial Cells/virology , Fibroblasts/immunology , Fibroblasts/virology , Gene Expression , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/immunology , Hepatocytes/immunology , Hepatocytes/virology , Host-Pathogen Interactions/immunology , Humans , Keratinocytes/immunology , Keratinocytes/virology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Transgenes , Vero Cells , Virus Internalization/drug effects , Axl Receptor Tyrosine Kinase
9.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Article in English | MEDLINE | ID: mdl-34127536

ABSTRACT

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Subject(s)
Acute Kidney Injury/therapy , Extracellular Vesicles , Genetic Therapy/methods , Hepatitis A Virus Cellular Receptor 1/genetics , Snail Family Transcription Factors/genetics , Transcription Factor RelA/genetics , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Erythrocytes , Fibrosis , Inflammation/therapy , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Mice , Peptides , RNA Interference , RNA, Small Interfering/therapeutic use , Reperfusion Injury/complications , Snail Family Transcription Factors/metabolism , Transcription Factor RelA/metabolism , Ureteral Obstruction/complications
10.
Cell Metab ; 33(5): 1042-1061.e7, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951465

ABSTRACT

Tubulointerstitial abnormalities are predictive of the progression of diabetic kidney disease (DKD), and their targeting may be an effective means for prevention. Proximal tubular (PT) expression of kidney injury molecule (KIM)-1, as well as blood and urinary levels, are increased early in human diabetes and can predict the rate of disease progression. Here, we report that KIM-1 mediates PT uptake of palmitic acid (PA)-bound albumin, leading to enhanced tubule injury with DNA damage, PT cell-cycle arrest, interstitial inflammation and fibrosis, and secondary glomerulosclerosis. Such injury can be ameliorated by genetic ablation of the KIM-1 mucin domain in a high-fat-fed streptozotocin mouse model of DKD. We also identified TW-37 as a small molecule inhibitor of KIM-1-mediated PA-albumin uptake and showed in vivo in a kidney injury model in mice that it ameliorates renal inflammation and fibrosis. Together, our findings support KIM-1 as a new therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies/pathology , Fatty Acids/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Animals , Benzamides/pharmacology , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Endocytosis , Fibrosis , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacology , Sulfones/pharmacology
11.
Bioengineered ; 12(1): 1927-1938, 2021 12.
Article in English | MEDLINE | ID: mdl-34002670

ABSTRACT

Mounting evidence suggests that lncRNA regulates many important diseases. However, the biological role of most lncRNAs in gastric cancer (GC) remain unclear. In this paper, we determined differential expression of lncRNAs and predicted ceRNA networks in the GC database by bioinformatics analysis and validated in GC cells. The effect of lncRNA AL139002.1 on GC cells biological function was assessed by flow cytometry, CCK-8, colony formation, wound healing assay, transwell, western blot, and qRT-PCR. And the relationship of lncRNA AL139002.1 or HAVCR1 with miR-490-3p was verified by luciferase reporter assay. The results showed that lncRNA AL139002.1 was highly expressed in GC cells and lncRNA AL139002.1 knockdown induced apoptosis, while suppressed cell proliferation, migration, invasion, and EMT. Functional examining indicated that lncRNA AL139002.1 regulated HAVCR1 expression by competitively binding miR-490-3p. In addition, lncRNA AL139002.1/miR-490-3p/HAVCR1 regulated EMT and metastasis through MEK/ERK signaling. In conclusion, lncRNA AL139002.1 was highly expressed in GC cells, and lncRNA AL139002.1/miR-490-3p/HAVCR1 functioned critically in GC by regulating MEK/ERK signaling. Our findings demonstrated that lncRNA AL139002.1 served as a potential therapeutic and anti-metastatic biotarget for GC.


Subject(s)
Hepatitis A Virus Cellular Receptor 1/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Stomach Neoplasms , Cell Line, Tumor , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
12.
Toxicol In Vitro ; 75: 105179, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33905841

ABSTRACT

Renal toxicants such as cisplatin and cadmium cause segment-specific damages in kidney proximal tubules. Recently, we established an in vitro experimental system for evaluating segment-specific toxicity and transport of chemicals using immortalized S1, S2, and S3 cells derived from the S1, S2, and S3 regions of mouse kidney proximal tubules. In the present study, we examined the toxicity and accumulation of cisplatin, carboplatin, oxaliplatin, and cadmium in S1, S2, and S3 cells. We found that not only cisplatin but also carboplatin and oxaliplatin exhibited higher lethal toxicity in S3 cells than in S1 and S2 cells. At sublethal doses, cisplatin showed delayed induction of Kim-1 and clusterin on days 3 and 6, which may reflect the latent renal toxicity of cisplatin in vivo. The high sensitivities of S3 cells to the platinum-based agents were not due to the high accumulation of Pt in S3 cells. Exposure to cadmium resulted in similar toxicity among these cells, suggesting that S3 cells were not sensitive to any renal toxicants. Thus, the utilization of S1, S2, and S3 cells may provide a useful tool for the in vitro evaluation of the proximal tubule segment-specific toxicity of chemicals.


Subject(s)
Antineoplastic Agents/toxicity , Cadmium Chloride/toxicity , Carboplatin/toxicity , Cisplatin/toxicity , Kidney Tubules, Proximal/cytology , Oxaliplatin/toxicity , Animals , Cadmium/metabolism , Cell Survival/drug effects , Cells, Cultured , Clusterin/genetics , Copper Transporter 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Mice , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/metabolism , Platinum/metabolism
13.
Toxicol Ind Health ; 37(4): 173-181, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588697

ABSTRACT

There is a pressing need to find reliable biomarkers for the early diagnosis of silica-induced nephropathy. Abundant genes are upregulated in damaged kidneys with subsequent protein products appearing in the urine. Liver-type fatty acid-binding protein (L-FABP) and kidney injury molecule-1 (KIM-1) are among the most promising. Our objective was to study the importance of L-FABP and KIM-1 genes and their urinary proteins in the early detection of silica-induced renal injury, as compared with other conventional biomarkers. A cross-sectional study was conducted among 90 pottery workers occupationally exposed to silica, as compared to 90 controls. A full history taking and complete clinical examination were performed. Levels of serum creatinine, liver enzymes, urinary silicon, KIM-1, and L-FABP gene expression and protein products were measured. Estimated glomerular filtration rate (eGFR) was calculated, and abdominal ultrasound was performed. The results showed that the silica-exposed group had a statistically significant increase in serum creatinine and urinary silica, as well as a significant decrease in eGFR. Additionally, a significant increase in KIM-1 and L-FABP gene expression, associated with a significant increase in their urinary protein, was found among the exposed group. A positive correlation between urinary silica level and L-FABP gene expression was also found. A receiver operating characteristic curve analysis for L-FABP and KIM-1 gene as predictors for silica-induced nephropathy showed that L-FABP gene and protein specificity were greater than the KIM-1 gene and protein. Taken together, these findings suggest that the L-FABP gene and its protein product may be used as early indicators for renal injury among silica exposed workers.


Subject(s)
Fatty Acid-Binding Proteins/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/genetics , Silicon Dioxide/blood , Adult , Biomarkers , Case-Control Studies , Creatinine/blood , Egypt , Female , Gene Expression , Hepatitis A Virus Cellular Receptor 1/analysis , Humans , Male , Middle Aged , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/urine , Silicon Dioxide/adverse effects , Silicon Dioxide/urine , Young Adult
14.
J Mol Cell Biol ; 13(3): 185-196, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33493263

ABSTRACT

COVID-19 patients present high incidence of kidney abnormalities, which are associated with poor prognosis and mortality. The identification of SARS-CoV-2 in the kidney of COVID-19 patients suggests renal tropism of SARS-CoV-2. However, whether there is a specific target of SARS-CoV-2 in the kidney remains unclear. Herein, by using in silico simulation, coimmunoprecipitation, fluorescence resonance energy transfer, fluorescein isothiocyanate labeling, and rational design of antagonist peptides, we demonstrate that kidney injury molecule-1 (KIM1), a molecule dramatically upregulated upon kidney injury, binds with the receptor-binding domain (RBD) of SARS-CoV-2 and facilitates its attachment to cell membrane, with the immunoglobulin variable Ig-like (Ig V) domain of KIM1 playing a key role in this recognition. The interaction between SARS-CoV-2 RBD and KIM1 is potently blockaded by a rationally designed KIM1-derived polypeptide AP2. In addition, our results also suggest interactions between KIM1 Ig V domain and the RBDs of SARS-CoV and MERS-CoV, pathogens of two severe infectious respiratory diseases. Together, these findings suggest KIM1 as a novel receptor for SARS-CoV-2 and other coronaviruses. We propose that KIM1 may thus mediate and exacerbate the renal infection of SARS-CoV-2 in a 'vicious cycle', and KIM1 could be further explored as a therapeutic target.


Subject(s)
COVID-19/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Receptors, Virus/genetics , SARS-CoV-2/genetics , COVID-19/pathology , COVID-19/virology , Computer Simulation , Humans , Kidney/pathology , Kidney/virology , Protein Binding/genetics , SARS-CoV-2/pathogenicity
16.
Eur J Vasc Endovasc Surg ; 60(6): 905-915, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33032926

ABSTRACT

OBJECTIVE: Renal ischaemia reperfusion injury (IRI) is inevitable during open repair of pararenal aortic aneurysms. Pre-operative fasting potently increases resistance against IRI. The effect of fasting on IRI was examined in a hypomorphic Fibulin-4 mouse model (Fibulin-4+/R), which is predisposed to develop aortic aneurysms. METHODS: Wild type (WT) and Fibulin-4+/R mice were either fed ad libitum (AL) or fasted for two days before renal IRI induction by temporary clamping of the renal artery and vein of both kidneys. Six hours, 48 h, and seven days post-operatively, serum urea levels, renal histology, and mRNA expression levels of inflammatory and injury genes were determined to assess kidney function and damage. Additionally, matrix metalloproteinase activity in the kidney was assessed six months after IRI. RESULTS: Two days of fasting improved survival the first week after renal IRI in WT mice compared with AL fed mice. Short term AL fed Fibulin-4+/R mice showed improved survival and kidney function compared with AL fed WT mice, which could not be further enhanced by fasting. Both fasted WT and Fibulin-4+/R mice showed improved survival, kidney function and morphology compared with AL fed mice six months after renal IRI. Fibulin-4+/R kidneys of fasted mice showed reduced apoptosis together with increased matrix metalloprotease activity levels compared with AL fed Fibulin-4+/R mice, indicative of increased matrix remodelling. CONCLUSION: Fibulin-4+/R mice are naturally protected against the short-term, but not long-term, consequences of renal IRI. Pre-operative fasting protects against renal IRI and prevents (long-term) deterioration of kidney function and morphology in both WT and Fibulin-4+/R mice. These data suggest that pre-operative fasting may decrease renal damage in patients undergoing open abdominal aneurysm repair.


Subject(s)
Aortic Aneurysm/surgery , Fasting , Matrix Metalloproteinases/metabolism , Renal Insufficiency, Chronic/prevention & control , Reperfusion Injury/complications , Animals , Aortic Aneurysm/genetics , Apoptosis , Body Weight , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Interleukin-6/genetics , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Male , Mice , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Preoperative Period , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Survival Rate , Time Factors , Urea/blood
17.
Am J Physiol Renal Physiol ; 319(6): F1015-F1026, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33017186

ABSTRACT

Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1ß, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.


Subject(s)
Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Kidney Diseases/chemically induced , Lipopolysaccharides/toxicity , Oxadiazoles/pharmacology , Animals , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Hepatitis A Virus Cellular Receptor 1/genetics , Hepatitis A Virus Cellular Receptor 1/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Kidney Diseases/drug therapy , Lipocalin-2/genetics , Lipocalin-2/metabolism , Male , Mice , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
18.
Nephrol Dial Transplant ; 35(12): 2059-2072, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32853351

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, affecting ∼30% of the rapidly growing diabetic population, and strongly associated with cardiovascular risk. Despite this, the molecular mechanisms of disease remain unknown. METHODS: RNA sequencing (RNAseq) was performed on paired, micro-dissected glomerular and tubulointerstitial tissue from patients diagnosed with DN [n = 19, 15 males, median (range) age: 61 (30-85) years, chronic kidney disease stages 1-4] and living kidney donors [n = 20, 12 males, median (range) age: 56 (30-70) years]. RESULTS: Principal component analysis showed a clear separation between glomeruli and tubulointerstitium transcriptomes. Differential expression analysis identified 1550 and 4530 differentially expressed genes, respectively (adjusted P < 0.01). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses highlighted activation of inflammation and extracellular matrix (ECM) organization pathways in glomeruli, and immune and apoptosis pathways in tubulointerstitium of DN patients. Specific gene modules were associated with renal function in weighted gene co-expression network analysis. Increased messengerRNA (mRNA) expression of renal damage markers lipocalin 2 (LCN) and hepatitis A virus cellular receptor1 (HAVCR1) in the tubulointerstitial fraction was observed alongside higher urinary concentrations of the corresponding proteins neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in DN patients. CONCLUSIONS: Here we present the first RNAseq experiment performed on paired glomerular and tubulointerstitial samples from DN patients. We show that prominent disease-specific changes occur in both compartments, including relevant cellular processes such as reorganization of ECM and inflammation (glomeruli) as well as apoptosis (tubulointerstitium). The results emphasize the potential of utilizing high-throughput transcriptomics to decipher disease pathways and treatment targets in this high-risk patient population.


Subject(s)
Biomarkers/analysis , Diabetes Mellitus/physiopathology , Diabetic Nephropathies/genetics , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Transcriptome , Adult , Aged , Aged, 80 and over , Computational Biology/methods , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/pathology , Female , Hepatitis A Virus Cellular Receptor 1/genetics , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Kidney Function Tests , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Lipocalin-2/genetics , Lipocalin-2/metabolism , Male , Middle Aged , Sweden/epidemiology
19.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32752030

ABSTRACT

Partial or complete obstruction of the urinary tract is a common and challenging urological condition caused by a variety of conditions, including ureteral calculi, ureteral pelvic junction obstruction, ureteral stricture, and malignant ureteral obstruction. The condition, which may develop in patients of any age, induces tubular and interstitial injury followed by inflammatory cell infiltration and interstitial fibrosis, eventually impairing renal function. The serum creatinine level is commonly used to evaluate global renal function but is not sensitive to early changes in the glomerular filtration rate and unilateral renal damage. Biomarkers of acute kidney injury are useful for the early detection and monitoring of kidney injury induced by upper urinary tract obstruction. These markers include levels of neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemotactic protein-1, kidney injury molecule 1, N-acetyl-b-D-glucosaminidase, and vanin-1 in the urine and serum NGAL and cystatin C concentrations. This review summarizes the pathophysiology of kidney injury caused by upper urinary tract obstruction, the roles played by emerging biomarkers of obstructive nephropathy, the mechanisms involved, and the clinical utility and limitations of the biomarkers.


Subject(s)
Acute Kidney Injury/genetics , Biomarkers/metabolism , Inflammation/genetics , Kidney/metabolism , Acute Kidney Injury/pathology , Amidohydrolases/genetics , Chemokine CCL2/genetics , Cystatin C/genetics , GPI-Linked Proteins/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Inflammation/pathology , Kidney/pathology , Lipocalin-2/genetics , Urinary Tract/metabolism , Urinary Tract/pathology
20.
Clin Epigenetics ; 12(1): 98, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616016

ABSTRACT

BACKGROUND: Ten-eleven translocation (Tet) methyl-cytosine dioxygenases (including Tet1/2/3)-mediated 5mC oxidation and DNA demethylation play important roles in embryonic development and adult tissue homeostasis. The expression of Tet2 and Tet3 genes are relatively abundant in the adult murine kidneys while Tet1 gene is expressed at a low level. Although Tet3 has been shown to suppress kidney fibrosis, the role of Tet2 in kidney physiology as well as renal ischemia-reperfusion (IR) injury is still largely unknown. RESULTS: Tet2-/- mice displayed normal kidney morphology and renal function as WT mice while the expression of genes associated with tight junction and adherens junction was impaired. At 24 h post-renal IR, Tet2-/- mice showed higher SCr and BUN levels, more severe tubular damage, and elevated expression of Kim1 and Ngal genes in the kidney in comparison with WT mice. Moreover, the transcriptomic analysis revealed augmented inflammatory response in the kidneys of Tet2-/- mice. CONCLUSIONS: Tet2 is dispensable for kidney development and function at baseline condition while protects against renal IR injury possibly through repressing inflammatory response. Our findings suggest that Tet2 may be a potential target for the intervention of IR-induced acute kidney injury (AKI).


Subject(s)
Cytosine/metabolism , Dioxygenases/genetics , Intercellular Junctions/genetics , Kidney/metabolism , Reperfusion Injury/genetics , Animals , DNA Demethylation , Dioxygenases/deficiency , Gene Expression/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Inflammation/genetics , Inflammation/prevention & control , Intercellular Junctions/pathology , Kidney/blood supply , Kidney/pathology , Lipocalin-2/genetics , Male , Mice , Mice, Inbred C57BL , Models, Animal , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL