Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Transgenic Res ; 33(1-2): 35-46, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461212

ABSTRACT

Chronic hepatitis B virus (HBV) poses a significant global health challenge as it can lead to acute or chronic liver disease and hepatocellular carcinoma (HCC). To establish a safety experimental model, a homolog of HBV-duck HBV (DHBV) is often used for HBV research. Hydrodynamic-based gene delivery (HGD) is an efficient method to introduce exogenous genes into the liver, making it suitable for basic research. In this study, a duck HGD system was first constructed by injecting the reporter plasmid pLIVE-SEAP via the ankle vein. The highest expression of SEAP occurred when ducks were injected with 5 µg/mL plasmid pLIVE-SEAP in 10% bodyweight volume of physiological saline for 6 s. To verify the distribution and expression of exogenous genes in multiple tissues, the relative level of foreign gene DNA and ß-galactosidase staining of LacZ were evaluated, which showed the plasmids and their products were located mainly in the liver. Additionally, ß-galactosidase staining and fluorescence imaging indicated the delivered exogenous genes could be expressed in a short time. Further, the application of the duck HGD model on DHBV treatment was investigated by transferring representative anti-HBV genes IFNα and IFNγ into DHBV-infected ducks. Delivery of plasmids expressing IFNα and IFNγ inhibited DHBV infection and we established a novel efficient HGD method in ducks, which could be useful for drug screening of new genes, mRNAs and proteins for anti-HBV treatment.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B Virus, Duck , Hepatitis B, Chronic , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/pathology , Ducks/genetics , Hepatitis B, Chronic/pathology , Liver Neoplasms/pathology , Hydrodynamics , Liver , Hepatitis B Virus, Duck/genetics , beta-Galactosidase , DNA, Viral/genetics
2.
Antiviral Res ; 224: 105835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401714

ABSTRACT

Nucleic acid polymers (NAPs) are an attractive treatment modality for chronic hepatitis B (CHB), with REP2139 and REP2165 having shown efficacy in CHB patients. A subset of patients achieve functional cure, whereas the others exhibit a moderate response or are non-responders. NAP efficacy has been difficult to recapitulate in animal models, with the duck hepatitis B virus (DHBV) model showing some promise but remaining underexplored for NAP efficacy testing. Here we report on an optimized in vivo DHBV duck model and explore several characteristics of NAP treatment. REP2139 was efficacious in reducing DHBV DNA and DHBsAg levels in approximately half of the treated ducks, whether administered intraperitoneally or subcutaneously. Intrahepatic or serum NAP concentrations did not correlate with efficacy, nor did the appearance of anti-DHBsAg antibodies. Furthermore, NAP efficacy was only observed in experimentally infected ducks, not in endogenously infected ducks (vertical transmission). REP2139 add-on to entecavir treatment induced a deeper and more sustained virological response compared to entecavir monotherapy. Destabilized REP2165 showed a different activity profile with a more homogenous antiviral response followed by a faster rebound. In conclusion, subcutaneous administration of NAPs in the DHBV duck model provides a useful tool for in vivo evaluation of NAPs. It recapitulates many aspects of this class of compound's efficacy in CHB patients, most notably the clear division between responders and non-responders.


Subject(s)
Hepadnaviridae Infections , Hepatitis B Virus, Duck , Hepatitis B, Chronic , Hepatitis, Viral, Animal , Nucleic Acids , Animals , Humans , Hepatitis B Virus, Duck/genetics , Hepatitis B, Chronic/drug therapy , Antiviral Agents/pharmacology , Nucleic Acids/therapeutic use , Polymers/therapeutic use , Treatment Outcome , Ducks/genetics , DNA, Viral , Hepatitis, Viral, Animal/drug therapy , Hepatitis B virus , Hepadnaviridae Infections/drug therapy , Hepadnaviridae Infections/veterinary , Liver
3.
Braz J Microbiol ; 54(4): 3299-3305, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673839

ABSTRACT

Duck hepatitis B virus (DHBV) infection model was frequently used as the experimental model for human hepatitis B virus (HBV) research. In order to decipher the genetic characteristics of DHBVs from Anhui province of China, 120 duck liver tissue samples were collected and subjected to PCR screening, and 28 samples were detected as DHBV positive. Subsequently, five DHBV-positive samples were selected for genome-wide amplification and a comprehensive analysis. Comparative analysis of complete genome sequences using the MegAlign program showed that five strains of DHBVs shared 94.5-96.3% with each other and 93.2-98.7% with other reference strains in GenBank. The phylogenetic analysis showed that all five DHBV strains belonged to the evolutionary branch of "Chinese DHBV" isolates or DHBV-2. Importantly, three potential intra-genotypic recombination events, between strains AAU-6 and Guilin, strains AAU-1 and GD3, and strains AAU-6 and AAU-1, were respectively found using the RDP and SimPlot softwares and considered the first report in avihepadnaviruses. These results not only improve our understanding for molecular prevalence status of DHBV among ducks, but also provide a reference for recombination mechanism of HBV.


Subject(s)
Hepatitis B Virus, Duck , Animals , Humans , Hepatitis B Virus, Duck/genetics , Phylogeny , Polymerase Chain Reaction/methods , Hepatitis B virus/genetics , Ducks/genetics , Ducks/microbiology , DNA, Viral/genetics , Liver
4.
Phytomedicine ; 116: 154848, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37163901

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection remains a major global health burden, due to the increasing risk of complications, such as cirrhosis and hepatocellular carcinoma. Novel anti-HBV agents are critical required. Our previous study suggested that Artemisia argyi essential oil (AAEO) significantly inhibited the replication of HBV DNA and especially the secretion of hepatitis B antigen in vitro. PURPOSE: The aim of this study was to prepare AAEO loaded nanostructured lipid carriers (AAEO-NLCs) for the delivery of AAEO to the liver, investigated the therapeutic benefits of AAEO-NLCs against HBV in a duck HBV (DHBV) model and explored its potential mechanism. STUDY DESIGN AND METHODS: AAEO-NLCs were prepared by hot homogenization and ultrasonication method. The DHBV-infected ducks were treated with AAEO (4 mg/kg), AAEO-NLCs (0.8, 4, and 20 mg/kg of AAEO), and lamivudine (20 mg/kg) for 15 days. The DHBV DNA levels in the serum and liver were measured by quantitative Real-Time PCR. Pharmacokinetics and liver distribution were performed in rats after oral administration of AAEO-NLCs and AAEO suspension. The potential antiviral mechanism and active compounds of AAEO were investigated by network pharmacology and molecular docking. RESULTS: AAEO-NLCs markedly inhibited the replication of DHBV DNA in a dose-dependent manner and displayed a low virologic rebound following withdrawal the treatment in DHBV-infected ducks. Moreover, AAEO-NLCs led to a more pronounced reduction in viral DNA levels than AAEO suspension. Further investigations of pharmacokinetics and liver distribution in rats confirmed that NLCs improved the oral bioavailability and increased the liver exposure of AAEO. The potential mechanisms of AAEO against HBV explored by network pharmacology were associated with signaling pathways related to immune response, such as tumor necrosis factor, nuclear factor kappa B, and sphingolipid signaling pathways. Furthermore, a total of 16 potential targets were obtained, including prostaglandin-endoperoxide synthase-2 (PTGS2), caspase-3, progesterone receptor, etc. Compound-target docking results confirmed that four active compounds of AAEO had strong binding interactions with the active sites of PTGS2. CONCLUSIONS: AAEO-NLCs displayed potent anti-HBV activity with improved oral bioavailability and liver exposure of AAEO. Thus, it may be a potential therapeutic strategy for the treatment of HBV infection.


Subject(s)
Artemisia , Hepatitis B Virus, Duck , Liver Neoplasms , Oils, Volatile , Rats , Animals , Molecular Docking Simulation , Oils, Volatile/pharmacology , Network Pharmacology , Cyclooxygenase 2 , Antiviral Agents/pharmacology , Hepatitis B virus/genetics , Hepatitis B Virus, Duck/genetics
5.
Arch Virol ; 168(3): 85, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763177

ABSTRACT

Research into disease pathogens can greatly benefit from viral metagenomics technology. Using this technique, we investigated potential disease pathogens that resulted in the death of many ducks on a duck farm. Two duck circoviruses (DuCV) and one duck hepatitis B virus (DHBV) were detected and identified, and all three strains were closely related to avian-associated viruses. Two duck circoviruses had 81.64%-97.65% genome-wide sequence identity to some reference strains, and duck hepatitis B virus shared 75.85%-98.92% identity with other strains. Clinical characteristics of the diseased ducks, including ruffled feathers, lethargy, and weight loss, were comparable to those observed in cases of DuCV infection. Further research is needed to determine whether coinfection with DHBV leads to liver damage and exacerbation of the disease.


Subject(s)
Avihepadnavirus , Hepatitis B Virus, Duck , Hepatitis, Viral, Animal , Animals , Ducks , Farms , DNA, Viral , Hepatitis B Virus, Duck/genetics , Liver
6.
Microbiol Spectr ; 10(4): e0176122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35880868

ABSTRACT

Analytical performance of hepatitis B virus (HBV) DNA quantitative assay is critical for screening infection and initiating and monitoring antiviral treatment. In this study, the limit of detection (LoD) and linearity of Aptima HBV Quant assay were evaluated, and analytical performance was compared with that of the Abbott RealTime M2000 HBV Quant assay and the Procleix Ultrio Plus dHBV assay in plasma samples. The LoDs for genotypes B, C, and D plasma samples were 2.139 (1.531, 4.520), 3.120 (2.140, 7.373), and 3.330 (2.589, 4.907) IU/mL, respectively. The R2 value fitted by linear regression of serially diluted samples less than 2,000 IU/mL was above 0.9. There was no difference in positive rate between Aptima and Abbott or between Aptima and Procleix. Quantitative results of Aptima and Abbott showed good correlation with an r of >0.9 using Spearman analysis, while the quantitative results of Aptima were slightly lower than those of Abbott. Usual mutations in the HBV S region had no impact on Aptima assay. This study showed that Aptima is a dual-targeted transcription-mediated amplification (TMA) assay suitable for HBV DNA detection in clinical practice, with quantitative performance comparable to that of the Abbott RealTime M2000 HBV Quant assay and qualitative performance comparable to that of the Procleix Ultrio Plus dHBV assay. IMPORTANCE The Aptima HBV Quant assay (Hologic Inc., San Diego, CA, USA) is a dual-target real-time transcription-mediated amplification (RT-TMA) assay. This study aims to evaluate whether this assay is suitable for HBV DNA detection. As a result, the assay showed high sensitivity with LoDs below 3.5 IU/mL. The amplification efficiency of Aptima for samples below 2,000 IU/mL is adequate for clinical practice, with an R2 of >0.9 fitted by linear regression. Usual mutations in the HBV S region did not affect the performance of Aptima. Moreover, its performance was comparable to the widely used Abbott RealTime M2000 HBV Quant assay for detecting HBV DNA in plasma specimens. Although not indicated for use as a diagnostic or blood screening assay, the Aptima HBV Quant assay demonstrated comparable qualitative performance to the Procleix Ultrio Plus dHBV system.


Subject(s)
Hepatitis B Virus, Duck , Hepatitis B virus , DNA, Viral/genetics , Hepatitis B Virus, Duck/genetics , Hepatitis B virus/genetics , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Viral Load/methods
7.
J Gen Virol ; 103(4)2022 04.
Article in English | MEDLINE | ID: mdl-35438620

ABSTRACT

The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.


Subject(s)
Hepatitis B Virus, Duck , Hepatitis B, Chronic , Hepatitis B , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/metabolism , Hepatitis B virus/physiology , Humans , Uracil , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Virus Replication/genetics
8.
Bull Exp Biol Med ; 172(5): 573-578, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35352245

ABSTRACT

Syringopicroside is a kind of iridoid monomer compound isolated from Syringa oblata exhibiting a potent effect against hepatitis B virus (HBV). The therapeutic effect and safety of syringopicroside-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (SYR-NP) were studied on the model of HBV-infected ducklings and on cultured HepG2.2.15 cells. HBV DNA in ducklings was assessed by fluorescence quantitative PCR. In HepG2.2.15 cells, the content of HBsAg and HBeAg were assayed. Acute toxicity of SYR-NP was studied in ICR mice in 12 h and 7 days after SYR-NP administration. The serum levels of HBV DNA in ducklings treated with SYR-NP in a high dose was significantly lower than in the control. In HepG2.2.15 cells treated with different doses of SYR-NP, the concentrations of HBsAg and HBeAg were significantly below the control. Acute toxicity test showed high safety of SYR-NP. Thus, SYR-NP can inhibit replication of HBV DNA and protect the liver tissue.


Subject(s)
Hepatitis B Virus, Duck , Hepatitis B , Animals , DNA, Viral/genetics , Glycosides , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B Virus, Duck/genetics , Hepatitis B e Antigens/pharmacology , Hepatitis B e Antigens/therapeutic use , Hepatitis B virus/genetics , Humans , Mice , Mice, Inbred ICR , Virus Replication
9.
PLoS Pathog ; 18(3): e1010362, 2022 03.
Article in English | MEDLINE | ID: mdl-35259189

ABSTRACT

Hepadnaviruses, including hepatitis B virus (HBV) as a major human pathogen, replicate their tiny 3 kb DNA genomes by capsid-internal protein-primed reverse transcription of a pregenomic (pg) RNA. Initiation requires productive binding of the viral polymerase, P protein, to a 5´ proximal bipartite stem-loop, the RNA encapsidation signal ε. Then a residue in the central ε bulge directs the covalent linkage of a complementary dNMP to a Tyr sidechain in P protein´s Terminal Protein (TP) domain. After elongation by two or three nucleotides (nt) the TP-linked DNA oligo is transferred to a 3´ proximal acceptor, enabling full-length minus-strand DNA synthesis. No direct structural data are available on hepadnaviral initiation complexes but their cell-free reconstitution with P protein and ε RNA (Dε) from duck HBV (DHBV) provided crucial mechanistic insights, including on a major conformational rearrangement in the apical Dε part. Analogous cell-free systems for human HBV led at most to P-ε binding but no detectable priming. Here we demonstrate that local relaxation of the highly basepaired ε upper stem, by mutation or via synthetic split RNAs, enables ε-dependent in vitro priming with full-length P protein from eukaryotic translation extract yet also, and without additional macromolecules, with truncated HBV miniP proteins expressed in bacteria. Using selective 2-hydroxyl acylation analyzed by primer extension (SHAPE) we confirm that upper stem destabilization correlates with in vitro priming competence and show that the supposed bulge-closing basepairs are largely unpaired even in wild-type ε. We define the two 3´ proximal nt of this extended bulge as main initiation sites and provide evidence for a Dε-like opening of the apical ε part upon P protein binding. Beyond new HBV-specific basic aspects our novel in vitro priming systems should facilitate the development of high-throughput screens for priming inhibitors targeting this highly virus-specific process.


Subject(s)
Hepatitis B virus , RNA, Viral , Virus Replication , Base Sequence , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/physiology , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA-Directed DNA Polymerase/chemistry
10.
Intervirology ; 64(4): 185-193, 2021.
Article in English | MEDLINE | ID: mdl-34167117

ABSTRACT

INTRODUCTION: The association between hepatitis B virus (HBV) infection and the development of diabetes remains controversial. This study examined the effect of HBV infection on glucose homeostasis using a duck HBV (DHBV) model. METHODS: Plasma DHBV DNA was detected by quantitative polymerase chain reaction (PCR). Tissue infection of DHBV was determined by detecting DHBV covalently closed circular DNA (cccDNA) with a method of rolling circle amplification combined with cross-gap PCR, and verified by fluorescence in situ hybridization assay. An intravenous injection glucose tolerance test (GTT) was used to analyze the effect of DHBV infection on glucose tolerance. RESULTS: Of the finally included 97 domestic ducks, 53 (54.6%) were congenitally infected by DHBV. The positive rate of DHBV cccDNA in the liver, kidney, pancreas, and skeletal muscle of the infected ducks was 100, 75.5, 67.9, and 47.2%, respectively. The DHBV-infected ducks had higher blood glucose levels at 15 and 30 min post-load glucose (p < 0.01 and p < 0.001, respectively) in the GTT, much more individuals with greater glucose area under curve (p < 0.01), and a 57% impaired glucose tolerance (IGT) rate, as compared with noninfected controls. In addition, the subgroups of the infected ducks with DHBV cccDNA positive in skeletal muscle maintained the higher blood glucose level up to 2 h post-load glucose during the GTT and had a 76% IGT rate. CONCLUSION: These results suggest that DHBV intrahepatic and extrahepatic infection impairs glucose tolerance, and thus evidence the association of DHBV infection with the dysregulation of glucose metabolism.


Subject(s)
Hepatitis B Virus, Duck , Animals , DNA, Viral , Ducks , Glucose , Hepatitis B Virus, Duck/genetics , Hepatitis B virus , Homeostasis , Humans , In Situ Hybridization, Fluorescence , Liver
11.
Elife ; 92020 08 14.
Article in English | MEDLINE | ID: mdl-32795390

ABSTRACT

Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.


Subject(s)
Capsid Proteins/chemistry , Hepatitis B Virus, Duck/chemistry , Protein Folding , Amino Acid Sequence , Animals , Cell Line , Chickens , Cryoelectron Microscopy , Ducks/virology , Hepatitis B Virus, Duck/genetics , Models, Molecular , Nucleocapsid/metabolism , Protein Structure, Secondary , Virus Replication
12.
PLoS One ; 14(9): e0221394, 2019.
Article in English | MEDLINE | ID: mdl-31483818

ABSTRACT

BACKGROUND: Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS: We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS: In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION: The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.


Subject(s)
Antigens, Protozoan/metabolism , Hepatitis B Virus, Duck/genetics , Malaria Vaccines/biosynthesis , Pichia/metabolism , Vaccines, Virus-Like Particle/biosynthesis , Animals , Antibodies, Blocking/immunology , Antigens, Protozoan/genetics , Ducks/virology , Humans , Malaria/prevention & control , Malaria Vaccines/immunology , Malaria Vaccines/isolation & purification , Plasmodium falciparum/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/isolation & purification
13.
J Ethnopharmacol ; 244: 112132, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31381954

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Formula Le-Cao-Shi (LCS) is a traditional Chinese medicine (TCM), which has long been used as a folk remedy against hepatitis B in China. The present study was conducted to evaluate the anti-hepatitis B effects of aqueous extract of LCS in vivo and in vitro. MATERIALS AND METHOD: we investigated the anti-HBV effects of LCS in vivo and in vitro with duck hepatitis B model and HepG2.2.15 cell line model, respectively. The serologic and cellular biomarkers and the histopathological changes were examined. RESULTS: By a duck hepatitis B model, the extract of LCS was found to restrain the expressions of duck hepatitis B surface antigen (DHBsAg), hepatitis B e antigen (DHBeAg), and HBV-DNA (DHBV-DNA). Moreover, LCS could decrease the levels of aspartate and alanine aminotransferases (AST and ALT) and ameliorate duck liver histological lesions. Correspondingly, in a HepG2.2.15 cellular model, LCS could also significantly inhibit the secretions of HBsAg and HBeAg. CONCLUSION: LCS exerted potent anti-hepatitis effects against the infection of HBV. The above results demonstrated the first-hand experimental evidences for the anti-hepatitis B efficiency of LCS. Our study provides a basis for further exploration and development of this promising compound prescription to treat hepatitis B disease.


Subject(s)
Antiviral Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Hepatitis B/drug therapy , Hepatitis, Viral, Animal/drug therapy , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , DNA, Viral , Ducks , Hepatitis B/immunology , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B Surface Antigens/immunology , Hepatitis B Virus, Duck/drug effects , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/immunology , Hepatitis B e Antigens/immunology , Hepatitis, Viral, Animal/immunology , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/virology , Humans , Liver/drug effects , Liver/pathology , Medicine, Chinese Traditional
14.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29046450

ABSTRACT

Chronic hepatitis B affects over 300 million people who are at risk of developing liver cancer. The basis for the persistence of hepatitis B virus (HBV) in hepatocytes, even in the presence of available antiviral therapies, lies in the accumulation of covalently closed circular DNA (cccDNA) in nuclei of infected cells. While methods for cccDNA quantification from liver biopsy specimens and cell lines expressing the virus are known, information about cccDNA formation, stability, and turnover is lacking. In particular, little is known about the fate of cccDNA during cell division. To fill the gaps in knowledge concerning cccDNA biology, we have developed a fluorescence imaging in situ hybridization (FISH)-based assay for the detection of duck hepatitis B virus (DHBV) cccDNA and HBV nuclear DNA in established cell lines. Using FISH, we determined the distribution of cccDNA under conditions mimicking chronic infections with and without antiviral therapy, which prevents de novo viral replication. Our results showed that the copy numbers of viral nuclear DNA can vary by as much as 1.8 orders of magnitude among individual cells and that antiviral therapy leads to a reduction in nuclear DNA in a manner consistent with symmetrical distribution of viral DNA to daughter cells.IMPORTANCE A mechanistic understanding of the stability of HBV cccDNA in the presence of antiviral therapy and during cell division induced by immune-mediated lysis of infected hepatocytes will be critical for the future design of curative antiviral therapies against chronic hepatitis B. Current knowledge about cccDNA stability was largely derived from quantitative analyses of cccDNA levels present in liver samples, and little was known about the fate of cccDNA in individual cells. The development of a FISH-based assay for cccDNA tracking provided the first insights into the fate of DHBV cccDNA and nuclear HBV DNA under conditions mimicking antiviral therapy.


Subject(s)
DNA, Circular/metabolism , Hepatitis B Virus, Duck/genetics , Hepatitis B virus/genetics , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Division/genetics , DNA Replication/drug effects , DNA, Circular/isolation & purification , DNA, Viral/drug effects , DNA, Viral/metabolism , Hepatitis B, Chronic/drug therapy , Hepatocytes/virology , In Situ Hybridization, Fluorescence/methods , Virus Replication
15.
Mol Med Rep ; 16(5): 7199-7204, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28944845

ABSTRACT

Current therapeutic strategies cannot eradicate hepatitis B virus covalently closed circular DNA (HBV cccDNA), which accounts for the persistence of HBV infection. Very recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR­associated protein 9 (Cas9) system has been used as an efficient and powerful tool for viral genome editing. Given that the primary duck hepatocyte (PDH) infected with duck hepatitis B virus (DHBV) has been widely used to study human HBV infection in vitro, the present study aimed to demonstrate the targeted inhibition of DHBV DNA, especially cccDNA, by the CRISPR/Cas9 system using this model. We designed six single­guide RNAs (sgRNA1­6) targeting the DHBV genome. The sgRNA/Cas9 plasmid was transfected into DHBV­infected PDHs, and then DHBV total DNA (in culture medium and PDHs) and cccDNA were quantified by reverse transcription­quantitative polymerase chain reaction. The combined inhibition of CRISPR/Cas9 system and entecavir (ETV) was also assessed. Two sgRNAs, sgRNA4 and sgRNA6, exhibited efficient inhibition on DHBV total DNA (77.23 and 86.51%, respectively), cccDNA (75.67 and 85.34%, respectively) in PDHs, as well as DHBV total DNA in the culture medium (62.17 and 59.52%, respectively). The inhibition remained or enhanced from day 5 to day 9 following transfection. The combination of the CRISPR/Cas9 system and ETV further increased the inhibitory effect on DHBV total DNA in PDHs and culture medium, but not cccDNA. The CRISPR/Cas9 system has the potential to be a useful tool for the suppression of DHBV DNA.


Subject(s)
CRISPR-Cas Systems/genetics , DNA, Viral/metabolism , Hepatitis B Virus, Duck/genetics , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Base Sequence , DNA, Viral/analysis , DNA, Viral/antagonists & inhibitors , Ducks , Gene Editing , Guanine/analogs & derivatives , Guanine/pharmacology , Guanine/therapeutic use , Hepatitis B/drug therapy , Hepatitis B/veterinary , Hepatitis B/virology , Hepatitis B Virus, Duck/drug effects , Plasmids/genetics , Plasmids/metabolism , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
16.
Sci Rep ; 7(1): 7120, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769080

ABSTRACT

Hepadnaviruses, including human hepatitis B virus (HBV), replicate their tiny DNA genomes by protein-primed reverse transcription of a pregenomic (pg) RNA. Replication initiation as well as pgRNA encapsidation depend on the interaction of the viral polymerase, P protein, with the ε RNA element, featuring a lower and an upper stem, a central bulge, and an apical loop. The bulge, somehow assisted by the loop, acts as template for a P protein-linked DNA oligo that primes full-length minus-strand DNA synthesis. Phylogenetic conservation and earlier mutational studies suggested the highly based-paired ε structure as crucial for productive interaction with P protein. Using the tractable duck HBV (DHBV) model we here interrogated the entire apical DHBV ε (Dε) half for sequence- and structure-dependent determinants of in vitro priming activity, replication, and, in part, in vivo infectivity. This revealed single-strandedness of the bulge, a following G residue plus the loop subsequence GUUGU as the few key determinants for priming and initiation site selection; unexpectedly, they functioned independently of a specific structure context. These data provide new mechanistic insights into avihepadnaviral replication initiation, and they imply a new concept towards a feasible in vitro priming system for human HBV.


Subject(s)
Base Pairing , Hepatitis B Virus, Duck/genetics , Inverted Repeat Sequences , Nucleotide Motifs , RNA, Viral/chemistry , RNA, Viral/genetics , Transcription Initiation Site , Animals , Aptamers, Nucleotide/genetics , Base Sequence , Binding Sites , Cell Line, Tumor , Chickens , Gene Expression Regulation, Viral , Mutation , Nucleic Acid Conformation , Protein Binding , RNA , Virus Replication
17.
J Virol ; 91(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28228589

ABSTRACT

The C-terminal domain (CTD) of hepadnavirus core protein is involved in multiple steps of viral replication. In particular, the CTD is initially phosphorylated at multiple sites to facilitate viral RNA packaging into immature nucleocapsids (NCs) and the early stage of viral DNA synthesis. For the avian hepadnavirus duck hepatitis B virus (DHBV), CTD is dephosphorylated subsequently to facilitate the late stage of viral DNA synthesis and to stabilize NCs containing mature viral DNA. The role of CTD phosphorylation in virion secretion, if any, has remained unclear. Here, the CTD from the human hepatitis B virus (HBV) was found to be dephosphorylated in association with NC maturation and secretion of DNA-containing virions, as in DHBV. In contrast, the CTD in empty HBV virions (i.e., enveloped capsids with no RNA or DNA) was found to be phosphorylated. The potential role of CTD dephosphorylation in virion secretion was analyzed through mutagenesis. For secretion of empty HBV virions, which is independent of either viral RNA packaging or DNA synthesis, multiple substitutions in the CTD to mimic either phosphorylation or dephosphorylation showed little detrimental effect. Similarly, phospho-mimetic substitutions in the DHBV CTD did not block the secretion of DNA-containing virions. These results indicate that CTD dephosphorylation, though associated with NC maturation in both HBV and DHBV, is not essential for the subsequent NC-envelope interaction to secrete DNA-containing virions, and the CTD state of phosphorylation also does not play an essential role in the interaction between empty capsids and the envelope for secretion of empty virions.IMPORTANCE The phosphorylation state of the C-terminal domain (CTD) of hepatitis B virus (HBV) core or capsid protein is highly dynamic and plays multiple roles in the viral life cycle. To study the potential role of the state of phosphorylation of CTD in virion secretion, we have analyzed the CTD phosphorylation state in complete (containing the genomic DNA) versus empty (genome-free) HBV virions. Whereas CTD is unphosphorylated in complete virions, it is phosphorylated in empty virions. Mutational analyses indicate that neither phosphorylation nor dephosphorylation of CTD is required for virion secretion. These results demonstrate that while CTD dephosphorylation is associated with HBV DNA synthesis, the CTD state of phosphorylation may not regulate virion secretion.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Hepatitis B Virus, Duck/metabolism , Hepatitis B virus/metabolism , Virus Assembly/genetics , Animals , Cell Line, Tumor , Chickens , Hep G2 Cells , Hepatitis B Virus, Duck/genetics , Hepatitis B virus/genetics , Humans , Phosphorylation , Protein Structure, Tertiary , RNA, Viral/metabolism , Virus Replication , Virus Shedding
18.
Antiviral Res ; 131: 40-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27083116

ABSTRACT

Inhibitors of hepadnaviral DNA polymerases are predicted to inhibit both minus and plus strand of viral DNA synthesis and arrest viral DNA replication at the stage of pregenomic (pg) RNA-containing nucleocapsids. However, analyses of the RNA species of human and duck hepatitis B viruses (HBV and DHBV, respectively) in hepatoma cells treated with viral DNA polymerase inhibitors revealed the genesis of novel RNA species migrating slightly faster than the full-length pgRNA. The DNA polymerase inhibitor-induced accumulation of these RNA species were abolished in the presence of alpha-interferon or HBV nucleocapsid assembly inhibitors. Moreover, they were protected from microccocal nuclease digestion and devoid of a poly-A tail. These characteristics suggest that the novel RNA species are most likely generated from RNase H cleavage of encapsidated pgRNA, after primer translocation and synthesis of the 5' terminal portion of minus strand DNA. In support of this hypothesis, DNA polymerase inhibitor treatment of chicken hepatoma cells transfected with a DHBV genome encoding an RNase H inactive DNA polymerase (E696H) failed to produce such RNA species. Our results thus suggest that the currently available DNA polymerase inhibitors do not efficiently arrest minus strand DNA synthesis at the early stage in hepatocytes. Hence, development of novel antiviral agents that more potently suppress viral DNA synthesis or viral nucleocapsid assembly inhibitors that are mechanistically complementary to the currently available DNA polymerase inhibitors are warranted.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Hepatitis B Virus, Duck/genetics , Hepatitis B virus/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA, Viral/metabolism , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular , Cell Line , DNA Replication/drug effects , DNA, Viral/metabolism , Hepatitis B Virus, Duck/drug effects , Hepatitis B Virus, Duck/physiology , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Humans , Interferon-alpha/pharmacology , Liver Neoplasms , Nucleocapsid/metabolism , RNA/metabolism , RNA, Viral/isolation & purification , Ribonuclease H/metabolism , Virus Assembly/drug effects , Virus Replication/drug effects
19.
PLoS One ; 10(12): e0145465, 2015.
Article in English | MEDLINE | ID: mdl-26713436

ABSTRACT

Previous mutation based studies showed that ablating synthesis of viral envelope proteins led to elevated hepadnaviral covalently closed circular DNA (cccDNA) amplification, but it remains unknown how cccDNA amplification is regulated in natural hepadnaviral infection because of a lack of research system. In this study we report a simple procedure to prepare two identical duck hepatitis B virus inocula, but they possess 10-100-fold difference in cccDNA amplification in infected cell culture. We demonstrate that the infected cells with higher cccDNA amplification significantly reduce the virus secretion efficiency that results in higher accumulation of relaxed circular DNA (rcDNA) and DHBsAg in the cells. The infected cells with lower cccDNA amplification significantly increase the virus secretion efficiency that leads to lower intracellular rcDNA and DHBsAg accumulation. In contrast with the findings generated in the mutation based experimental system, the regulation of cccDNA amplification in natural hepadnaviral infection bypasses direct regulation of the cellular envelope proteins concentration, instead it modulates virus secretion efficiency that ultimately impacts the intracellular rcDNA concentration, an important factor determining the destination of the synthesized rcDNA in infected cells.


Subject(s)
DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/physiology , Animals , Ducks , Hepatitis B Virus, Duck/metabolism , Hepatocytes/cytology , Hepatocytes/virology , Intracellular Space/virology , Nucleic Acid Amplification Techniques , Virion/metabolism , Virus Internalization , Virus Replication
20.
PLoS One ; 10(6): e0128401, 2015.
Article in English | MEDLINE | ID: mdl-26079492

ABSTRACT

Hepatitis B virus (HBV) replication and persistence are sustained by a nuclear episome, the covalently closed circular (CCC) DNA, which serves as the transcriptional template for all viral RNAs. CCC DNA is converted from a relaxed circular (RC) DNA in the virion early during infection as well as from RC DNA in intracellular progeny nucleocapsids via an intracellular amplification pathway. Current antiviral therapies suppress viral replication but cannot eliminate CCC DNA. Thus, persistence of CCC DNA remains an obstacle toward curing chronic HBV infection. Unfortunately, very little is known about how CCC DNA is formed. CCC DNA formation requires removal of the virally encoded reverse transcriptase (RT) protein from the 5' end of the minus strand of RC DNA. Tyrosyl DNA phosphodiesterase-2 (Tdp2) was recently identified as the enzyme responsible for cleavage of tyrosyl-5' DNA linkages formed between topoisomerase II and cellular DNA. Because the RT-DNA linkage is also a 5' DNA-phosphotyrosyl bond, it has been hypothesized that Tdp2 might be one of several elusive host factors required for CCC DNA formation. Therefore, we examined the role of Tdp2 in RC DNA deproteination and CCC DNA formation. We demonstrated Tdp2 can cleave the tyrosyl-minus strand DNA linkage using authentic HBV RC DNA isolated from nucleocapsids and using RT covalently linked to short minus strand DNA produced in vitro. On the other hand, our results showed that Tdp2 gene knockout did not block CCC DNA formation during HBV infection of permissive human hepatoma cells and did not prevent intracellular amplification of duck hepatitis B virus CCC DNA. These results indicate that although Tdp2 can remove the RT covalently linked to the 5' end of the HBV minus strand DNA in vitro, this protein might not be required for CCC DNA formation in vivo.


Subject(s)
DNA, Circular/metabolism , DNA, Viral/metabolism , Hepatitis B virus/physiology , Hepatitis B/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA, Circular/genetics , DNA, Viral/genetics , DNA-Binding Proteins , Gene Knockdown Techniques , Gene Knockout Techniques , Genome, Viral , Hep G2 Cells , Hepatitis B/genetics , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/physiology , Hepatitis B virus/genetics , Hepatitis Virus, Duck/genetics , Hepatitis Virus, Duck/metabolism , Humans , Nuclear Proteins/genetics , Phosphoric Diester Hydrolases , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Transcription Factors/genetics , Up-Regulation , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...