Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 903
Filter
1.
Genome Res ; 34(4): 539-555, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38719469

ABSTRACT

Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.


Subject(s)
Breast Neoplasms , Chromatin , Enhancer Elements, Genetic , Estrogen Receptor alpha , Hepatocyte Nuclear Factor 3-alpha , Polymorphism, Single Nucleotide , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Chromatin/metabolism , Chromatin/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Cell Line, Tumor
2.
Syst Biol Reprod Med ; 70(1): 113-123, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38743820

ABSTRACT

As demonstrated in previous research, hsa_circ_0052602 (circODC1) is dynamically expressed in HPV-positive cervical cancer (CC). CircODC1 expression was quantified using qRT-PCR, and its role in CC cell growth was assessed via loss-of-function assays. Interactions between miR-607 and circODC1 or ODC1 were confirmed using bioinformatics and mechanistic assays. The association of FOXA1 with the circODC1 promoter was validated through ChIP and luciferase reporter assays. CircODC1 was highly expressed in HPV-positive CC cell lines, and its depletion significantly impeded malignant processes such as proliferation, migration, and invasion. We found that ODC1 also played an oncogenic role in HPV-positive CC cells. CircODC1 was shown to positively regulate ODC1 as a ceRNA, competitively binding to miR-607 to counteract its suppression of ODC1. HPV-associated FOXA1 was identified as a potential transcription factor of circODC1. Restoration experiments showed that overexpression of circODC1 could counterbalance the inhibitory effect of FOXA1 knockdown. These findings offer new insights into therapeutic strategies for HPV-positive CC patients.


Subject(s)
Cell Proliferation , Hepatocyte Nuclear Factor 3-alpha , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Female , Cell Line, Tumor , RNA, Circular/genetics , RNA, Circular/metabolism , Gene Expression Regulation, Neoplastic , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Int Immunopharmacol ; 133: 112129, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652964

ABSTRACT

Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Lung Injury , Mice, Inbred C57BL , Mitochondria , Reactive Oxygen Species , Sepsis , Animals , Humans , Mitochondria/metabolism , Mice , Reactive Oxygen Species/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Lung Injury/metabolism , Lung Injury/pathology , Lipopolysaccharides , Male , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Disease Models, Animal , Gene Knockdown Techniques , Acute Lung Injury/pathology , Acute Lung Injury/immunology , Alveolar Epithelial Cells/metabolism
4.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564048

ABSTRACT

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Receptors, Glucocorticoid/genetics , Transcription Factors , Chromatin , Acetyltransferases , Hepatocyte Nuclear Factor 3-alpha/genetics , E1A-Associated p300 Protein/genetics , CREB-Binding Protein/genetics
5.
Commun Biol ; 7(1): 510, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684876

ABSTRACT

Deregulation of the Wnt/ß-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the ß-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of ß-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/ß-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha , Liver Neoplasms , Wnt Signaling Pathway , beta Catenin , Humans , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Amino Acids/metabolism , Cell Line, Tumor , Transcription Factor 7-Like 2 Protein/metabolism , Transcription Factor 7-Like 2 Protein/genetics
6.
Medicine (Baltimore) ; 103(15): e37709, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608123

ABSTRACT

Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.


Subject(s)
Breast Neoplasms , Forkhead Transcription Factors , Female , Humans , Biomarkers , Breast Neoplasms/genetics , Forkhead Transcription Factors/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Repressor Proteins , RNA, Messenger
7.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38682180

ABSTRACT

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Subject(s)
Adenocarcinoma of Lung , CD8-Positive T-Lymphocytes , Glycolysis , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Ubiquitin-Conjugating Enzymes , Humans , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Mice , Mice, Nude , Tumor Escape/genetics , Female , Male
8.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Article in English | MEDLINE | ID: mdl-38624056

ABSTRACT

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Humans , Urinary Bladder/chemistry , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Biomarkers, Tumor/analysis , Tumor Suppressor Protein p53/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism
9.
Cancer Gene Ther ; 31(5): 736-745, 2024 May.
Article in English | MEDLINE | ID: mdl-38429368

ABSTRACT

Breast cancer is a heterogeneous disease, and breast cancer cell lines are invaluable for studying this heterogeneity. However, the epigenetic diversity across these cell lines remains poorly understood. In this study, we performed genome-wide chromatin accessibility analysis on 23 breast cancer cell lines, including 2 estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative (ER+/HER2-), 3 ER+/HER2+, 3 HER2+, and 15 triple-negative breast cancer (TNBC) lines. These cell lines were classified into three groups based on their chromatin accessibility: the receptor-positive group (Group-P), TNBC basal group (Group-B), and TNBC mesenchymal group (Group-M). Motif enrichment analysis revealed that only Group-P exhibited coenrichment of forkhead box A1 (FOXA1) and grainyhead-like 2 (GRHL2) motifs, whereas Group-B was characterized by the presence of the GRHL2 motif without FOXA1. Notably, Group-M did not show enrichment of either FOXA1 or GRHL2 motifs. Furthermore, gene ontology analysis suggested that group-specific accessible regions were associated with their unique lineage characteristics. To investigate the epigenetic landscape regulatory roles of FOXA1 and GRHL2, we performed knockdown experiments targeting FOXA1 and GRHL2, followed by assay for transposase-accessible chromatin sequencing analysis. The findings revealed that FOXA1 maintains Group-P-specific regions while suppressing Group-B-specific regions in Group-P cells. In contrast, GRHL2 preserves commonly accessible regions shared between Group-P and Group-B in Group-B cells, suggesting that FOXA1 and GRHL2 play a pivotal role in preserving distinct chromatin accessibility patterns for each group. Specifically, FOXA1 distinguishes between receptor-positive and TNBC cell lines, whereas GRHL2 distinguishes between basal-like and mesenchymal subtypes in TNBC lines.


Subject(s)
Breast Neoplasms , Chromatin , Epigenesis, Genetic , Hepatocyte Nuclear Factor 3-alpha , Transcription Factors , Humans , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female , Chromatin/metabolism , Chromatin/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
10.
Sci Rep ; 14(1): 7082, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528115

ABSTRACT

FOXA1 is a pioneer transcription factor that is frequently mutated in prostate, breast, bladder, and salivary gland malignancies. Indeed, metastatic castration-resistant prostate cancer (mCRPC) commonly harbour FOXA1 mutations with a prevalence of 35%. However, despite the frequent recurrence of FOXA1 mutations in prostate cancer, the mechanisms by which FOXA1 variants drive its oncogenic effects are still unclear. Semaphorin 3C (SEMA3C) is a secreted autocrine growth factor that drives growth and treatment resistance of prostate and other cancers and is known to be regulated by both AR and FOXA1. In the present study, we characterize FOXA1 alterations with respect to its regulation of SEMA3C. Our findings reveal that FOXA1 alterations lead to elevated levels of SEMA3C both in prostate cancer specimens and in vitro. We further show that FOXA1 negatively regulates SEMA3C via intronic cis elements, and that mutations in FOXA1 forkhead domain attenuate its inhibitory function in reporter assays, presumably by disrupting DNA binding of FOXA1. Our findings underscore the key role of FOXA1 in prostate cancer progression and treatment resistance by regulating SEMA3C expression and suggest that SEMA3C may be a driver of growth and tumor vulnerability of mCRPC harboring FOXA1 alterations.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha , Prostatic Neoplasms, Castration-Resistant , Semaphorins , Humans , Male , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Mutation , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Transcription Factors/metabolism , Semaphorins/genetics , Semaphorins/metabolism
11.
Mol Cell Biol ; 44(2): 43-56, 2024.
Article in English | MEDLINE | ID: mdl-38347726

ABSTRACT

Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.


Subject(s)
Colorectal Neoplasms , Transcriptome , Male , Humans , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Colorectal Neoplasms/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cytoskeletal Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
Sci Adv ; 10(6): eadk2285, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324694

ABSTRACT

Physiologically, FoxA1 plays a key role in liver differentiation and development, and pathologically exhibits an oncogenic role in prostate and breast cancers. However, its role and upstream regulation in liver tumorigenesis remain unclear. Here, we demonstrate that FoxA1 acts as a tumor suppressor in liver cancer. Using a CRISPR-based kinome screening approach, noncanonical inflammatory kinase IKBKE has been identified to inhibit FoxA1 transcriptional activity. Notably, IKBKE directly binds to and phosphorylates FoxA1 to reduce its complex formation and DNA interaction, leading to elevated hepatocellular malignancies. Nonphosphorylated mimic Foxa1 knock-in mice markedly delay liver tumorigenesis in hydrodynamic transfection murine models, while phospho-mimic Foxa1 knock-in phenocopy Foxa1 knockout mice to exhibit developmental defects and liver inflammation. Notably, Ikbke knockout delays diethylnitrosamine (DEN)-induced mouse liver tumor development. Together, our findings not only reveal FoxA1 as a bona fide substrate and negative nuclear effector of IKBKE in hepatocellular carcinioma (HCC) but also provide a promising strategy to target IKBEK for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Male , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Liver Neoplasms/pathology , Mice, Knockout
13.
Discov Med ; 36(180): 82-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273748

ABSTRACT

BACKGROUND: X-ray repair cross complementing 1 (XRCC1) rs1799782 polymorphism is associated with an increased risk of lung cancer (LC). The aim of this study is to analyze the underlying biological mechanisms. METHODS: Dual luciferase reporter assay was utilized to verify the impact of XRCC1 polymorphism upon promoter activity of XRCC1. Cell counting kit-8 (CCK-8) assay, colony formation assay, senescence-associated beta-galactosidase (SA-ß-gal) staining, and immunofluorescent staining were used to assess the viability, proliferation, senescence, and DNA damage of LC cells. Senescence-related proteins (cyclin dependent kinase inhibitor 1A (P21) and eukaryotic translation elongation factor 1-alpha (EF1A)) were quantified by Western blot. Chromatin immunoprecipitation was applied to validate the binding affinity of forkhead box A1 (FOXA1) and XRCC1. FOXA1-specific short hairpin RNA (shFOXA1) was used to perform the rescue assay. RESULTS: In LC cells, XRCC1 rs1799782 promoted viability and proliferation, inhibited senescence, and resulted in upregulation of EF1A as well as downregulation of P21 and phosphorylated H2A.X variant histone (γH2AX). XRCC1 rs1799782 promoted FOXA1-mediated transcription of XRCC1 through enhancing its binding to FOXA1. shFOXA1 counteracted the effects of XRCC1 rs1799782 upon the viability, proliferation, and senescence of LC cells. CONCLUSIONS: XRCC1 rs1799782 promotes DNA damage repair in LC cells through enhancing its binding to FOXA1, which facilitates FOXA1-mediated transcription of XRCC1.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , DNA-Binding Proteins/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Polymorphism, Genetic , DNA Damage , DNA Repair/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
14.
Nucleic Acids Res ; 52(2): 625-642, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38015476

ABSTRACT

Treatment of prostate cancer relies predominantly on the inhibition of androgen receptor (AR) signaling. Despite the initial effectiveness of the antiandrogen therapies, the cancer often develops resistance to the AR blockade. One mechanism of the resistance is glucocorticoid receptor (GR)-mediated replacement of AR function. Nevertheless, the mechanistic ways and means how the GR-mediated antiandrogen resistance occurs have remained elusive. Here, we have discovered several crucial features of GR action in prostate cancer cells through genome-wide techniques. We detected that the replacement of AR by GR in enzalutamide-exposed prostate cancer cells occurs almost exclusively at pre-accessible chromatin sites displaying FOXA1 occupancy. Counterintuitively to the classical pioneer factor model, silencing of FOXA1 potentiated the chromatin binding and transcriptional activity of GR. This was attributed to FOXA1-mediated repression of the NR3C1 (gene encoding GR) expression via the corepressor TLE3. Moreover, the small-molecule inhibition of coactivator p300's enzymatic activity efficiently restricted GR-mediated gene regulation and cell proliferation. Overall, we identified chromatin pre-accessibility and FOXA1-mediated repression as important regulators of GR action in prostate cancer, pointing out new avenues to oppose steroid receptor-mediated antiandrogen resistance.


Subject(s)
Chromatin , Prostatic Neoplasms , Receptors, Glucocorticoid , Humans , Male , Androgen Antagonists/pharmacology , Cell Line, Tumor , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
15.
Acta Histochem ; 126(1): 152120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041896

ABSTRACT

BACKGROUND: Previously, we have demonstrated that eccrine sweat gland cells (ESGCs) can reconstruct the three-dimensional (3D) structure of eccrine sweat glands (ESGs). However, there is still a need to explore source cells capable of regenerating ESG to address the issue of ESG regeneration in ESGC-deficient conditions, such as severe burns. METHODS: The epidermal cells and dermal cells in adult rat ventral foot skin (ESG-bearing) were isolated. The isolated single epidermal cells and dermal cells were mixed with Matrigel, and then the mixture was implanted into the axillary/inguinal fat pads of nude mice. Five weeks after implantation, the Matrigel plugs were harvested and the morphology and differentiation of the cells were examined by H&E staining and fluorescent immunohistochemical staining for ESG markers, such as Na+ -K+ -2Cl- cotransporter 1 (NKCC1), Na+ -K+ -ATPase (NKA), Foxa1 and K14. RESULTS: The epidermal cells and dermal cells of adult rat ventral foot skin can reconstruct 3D structure and express specific markers of ESGs in skin, such as NKCC1, NKA and Foxa1, indicating the ESG-phenotypic differentiation of the 3D structures. Double immunofluorescence staining showed that some 3D structures expressed both the myoepithelial cell marker alpha-SMA and the common marker K14 of duct cells and myoepithelial cells, while some 3D structures expressed only K14, indicating that ESG-like 3D structures differentiated into duct-like and secretory coiled cells. CONCLUSION: Epidermal and dermal cells from adult ESG-bearing skin can be used as a cell source for ESG regeneration.


Subject(s)
Eccrine Glands , Epidermis , Animals , Mice , Rats , Cell Differentiation , Hepatocyte Nuclear Factor 3-alpha , Mice, Nude , Skin , Sodium/chemistry , Potassium/chemistry , Chlorine/chemistry
16.
Mol Cell ; 84(2): 244-260.e7, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38101414

ABSTRACT

Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.


Subject(s)
Biomolecular Condensates , Chromatin , Hepatocyte Nuclear Factor 3-alpha , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Heterochromatin , Humans
17.
Brain Res Bull ; 206: 110860, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38143008

ABSTRACT

Forkhead box A1 (FOXA1), a member of the forkhead family of transcription factors, plays a crucial role in the development of various organ systems and exhibits neuroprotective properties. This study aims to investigate the effect of FOXA1 on Parkinson's disease (PD) and unravel the underlying mechanism. Transcriptome analysis of PD was conducted using three GEO datasets to identify aberrantly expressed genes. A mouse model of PD was generated by injecting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), resulting in reduced FOXA1 expression. FOXA1 decline was also observed in 1-methyl-4-phenylpyridinium-treated SH-SY5Y cells. Artificial upregulation of FOXA1 improved motor abilities of mice according to rotarod and pole tests, and it mitigated tissue damage, cell loss, and neuronal damage in the mouse substantia nigra or in vitro. FOXA1 was found to bind to the neurofibromin 1 (NF1) promoter, thereby inducing its transcription and inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Further experimentation revealed that silencing NF1 in mice or SH-SY5Y cells counteracted the neuroprotective effects of FOXA1. In conclusion, this research suggests that FOXA1 activates NF1 transcription and inactivates the MAPK signaling pathway, ultimately ameliorating neuronal damage and motor disability in PD. The findings may offer novel ideas in the field of PD management.


Subject(s)
Disabled Persons , Motor Disorders , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/pharmacology , MAP Kinase Signaling System , Mice, Inbred C57BL , Motor Disorders/drug therapy , Neuroblastoma/metabolism , Neurofibromin 1/metabolism , Neurofibromin 1/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/metabolism , Transcriptional Activation
18.
Mol Cancer ; 22(1): 195, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38044421

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. METHODS: RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. RESULTS: We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. CONCLUSIONS: Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Gemcitabine , RNA, Circular/genetics , RNA, Circular/metabolism , RNA Precursors , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , DNA Damage , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
19.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958805

ABSTRACT

Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel the intricate molecular characteristics of FOXA1 mutant prostate cancer through comprehensive in silico analysis of transcriptomic data from The Cancer Genome Atlas (TCGA). A comparison between FOXA1 mutant and control groups unearthed 1525 differentially expressed genes (DEGs), which map to eight intrinsic and six extrinsic signaling pathways. Interestingly, the majority of intrinsic pathways, but not extrinsic pathways, were validated using RNA-seq data of 22Rv1 cells from the GEO123619 dataset, suggesting complex biology in the tumor microenvironment. As a result of our in silico research, we identified novel therapeutic targets and potential drug candidates for FOXA1 mutant prostate cancer. KDM1A, MAOA, PDGFB, and HSP90AB1 emerged as druggable candidate targets, as we found that they have approved drugs throughout the drug database CADDIE. Notably, as most of the approved drugs targeting MAOA and KDM1A were monoamine inhibitors used for mental illness or diabetes, we suggest they have a potential to cure FOXA1 mutant primary prostate cancer without lethal side effects.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Histone Demethylases/metabolism
20.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37980723

ABSTRACT

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Mice , Aged , Male , Rats , Animals , L Cells , Rats, Wistar , Enteroendocrine Cells/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...