Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134293, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615646

ABSTRACT

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Subject(s)
Astacoidea , Gastrointestinal Microbiome , Neonicotinoids , Nitro Compounds , Transcriptome , Water Pollutants, Chemical , Animals , Neonicotinoids/toxicity , Astacoidea/drug effects , Astacoidea/genetics , Gastrointestinal Microbiome/drug effects , Nitro Compounds/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Oxidative Stress/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism
2.
Sci Total Environ ; 930: 172633, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38643877

ABSTRACT

This study aims to evaluate the effects of oxytetracycline (OTC) on detoxification and oxidative defense in the hepatopancreas and intestine of Chinese mitten crab (Eriocheir sinensis) under cadmium (Cd) stress. The crab was exposed to 0.6 µM Cd, 0.6 µM OTC, and 0.6 µM Cd plus 0.6 µM OTC for 42 days. Our results showed that in the intestine, OTC alone enhanced protein carboxylation (PC) and malondialdehyde (MDA) contents, which was associated with the increased OTC accumulation. Compared to Cd alone, Cd plus OTC increased Cd and OTC contents, and reduced detoxification (i.e., glutathione (GSH) content, gene expressions of cytochrome P450 (CYP) isoforms, 7-ethoxyresorufin O-deethylase (EROD) activity, mRNA levels and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), and antioxidant defense (i.e., gene expressions and activities of catalase (CAT) and superoxide dismutase (SOD)) in the intestine, leading to the increased in PC and MDA contents, suggesting that OTC had a synergistic effect on Cd-induced oxidative damage. In the hepatopancreas, although OTC alone increased OTC accumulation, it did not affect PC and MDA contents. Compared to Cd alone, Cd plus OTC reduced MDA content, which was closely related to the improvement of detoxification (i.e., GSH content, mRNA levels of CYP isoforms, EROD activity, gene expressions and activities of GPx, GR and GST), and antioxidant defense (gene expressions and activities of CAT and SOD, metallothionein content). Aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2) transcriptional expressions were positively correlated with most detoxification- and antioxidant-related gene expressions, respectively, indicating that AhR and Nrf2 were involved in the regulation of these gene expressions. Our results unambiguously demonstrated that OTC had tissue-specific effects on Cd-induced toxicological effect in E. sinensis, which contributed to accurately evaluating Cd toxicity modulated by TCs in crab.


Subject(s)
Antioxidants , Brachyura , Cadmium , Hepatopancreas , Oxytetracycline , Water Pollutants, Chemical , Animals , Brachyura/drug effects , Brachyura/physiology , Brachyura/metabolism , Cadmium/toxicity , Oxytetracycline/toxicity , Hepatopancreas/metabolism , Hepatopancreas/drug effects , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Intestines/drug effects , Inactivation, Metabolic , Oxidative Stress/drug effects
3.
Chemosphere ; 358: 142150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679174

ABSTRACT

Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.


Subject(s)
Penaeidae , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Penaeidae/drug effects , Oxidative Stress/drug effects , Neonicotinoids/toxicity , Pyridines/toxicity , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Insecticides/toxicity , Heterocyclic Compounds, 3-Ring
4.
Article in English | MEDLINE | ID: mdl-34597777

ABSTRACT

To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 µg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.


Subject(s)
Crustacea/drug effects , Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Hepatopancreas/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Hepatopancreas/pathology
5.
Sci Rep ; 11(1): 16140, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373575

ABSTRACT

Heavy metal Cadmium (Cd2+) pollution has become a severe environmental problem for aquatic organisms. In crustaceans, gills (Gi) and hepatopancreas (Hp) play a vital role in the toxicology. However, in Macrobrachium rosenbergill, there are few researches about gill and hepatopancreases responding to Cd2+ stress at a molecular level. In this study, transcriptomic analysis was applied to characterize gene expression profiles of gills and hepatopancreas of M. rosenbergill after Cd2+ exposure for 0 h, 3 h and 3 d. Six cDNA libraries (Gi 0 h, Gi 3 h, Gi 3 d, Hp 0 h, Hp 3 h, and Hp 3 d) were constructed and a total of 66,676 transcripts and 48,991 unigenes were annotated. Furthermore, differentially expressed genes (DEGs) were isolated by comparing the Cd2+ treated time-point libraries (3 h and 3 d group) with the control library (0 h group). The results showed that most of the DEGs were down-regulated after Cd2+ exposure and the number of DEGs among gill groups were significantly higher than those among hepatopancreas groups. GO functional and KEGG pathway analysis suggested many key DEGs in response to the Cd2+ stress, such as metallothionein and Hemocyanin. Additionally, a total of six DEGs were randomly selected to further identify their expressional profile by qPCR. The results indicated that these DEGs were involved in the response to Cd2+. This comparative transcriptome provides valuable molecular information on the mechanisms of responding to Cd2+ stress in M. rosenbergii, which lays the foundation for further understanding of heavy metal stress.


Subject(s)
Cadmium/toxicity , Palaemonidae/drug effects , Palaemonidae/genetics , Animals , Down-Regulation/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Library , Gills/drug effects , Gills/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Male , Molecular Sequence Annotation , Oxidative Stress/drug effects , Oxidative Stress/genetics , Palaemonidae/metabolism , Water Pollutants, Chemical/toxicity
6.
Fish Shellfish Immunol ; 117: 228-239, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418554

ABSTRACT

Superoxide dismutase (SOD) can effectively eliminate of excess ROS, which causes oxidative damage to lipids, proteins, and DNA. In this study, we cloned the CuZn-SOD, cMn-SOD1, and cMn-SOD2 genes in Eriocheir hepuensis, and found that the coding sequence (CDS) lengths were 627 bp, 861 bp and 1062 bp, which encoded 208, 286, and 353 amino acids, respectively. Phylogenetic analysis indicated that all SOD genes were evolutionarily conserved, while cMn-SOD2 had an extra gap (67 amino acids) in the conserved domain compared with cMn-SOD1 without huge changes in the tertiary structure of the conserved domain, suggesting that cMn-SOD2 may be a duplicate of cMn-SOD1. qRT-PCR showed that the three SOD genes were widely expressed in all the tested tissues, CuZn-SOD and cMn-SOD1 were mostly expressed in the hepatopancreas, while cMn-SOD2 was mostly expressed in thoracic ganglia. Under azadirachtin stress, the oxidation index of surviving individuals, including the T-AOC, SOD activity, and MDA contents increased in the early stage and then remained steady except for a decrease in MDA contents in the later stage. qRT-PCR showed that the three SOD genes displayed the same trends as SOD activity in surviving individuals, and the highest expressions of CuZn-SOD in the hepatopancreas, heart, and gill were 14.16, 1.41, and 30.87 times that of the corresponding control group, respectively. The changes were 1.35, 5.77 and 3.33 fold for cMn-SOD1 and 1.62, 1.71 and 1.79 fold for cMn-SOD2, respectively. However, the activity and expression of SOD genes in dead individuals were lower than that observed in surviving individuals. These results reveal that SOD plays a significant role in the defence against azadirachtin-induced oxidative stress.


Subject(s)
Arthropod Proteins/genetics , Brachyura/genetics , Insecticides/toxicity , Limonins/toxicity , Superoxide Dismutase/genetics , Animals , Female , Gills/drug effects , Gills/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Male , Myocardium/metabolism , Stress, Physiological/genetics
7.
Article in English | MEDLINE | ID: mdl-34252579

ABSTRACT

Ammonia nitrogen pollution seriously affects the economic benefits of Chinese mitten crab (Eriocheir sinensis) farming. In this study, we first evaluated the protective effects of melatonin (MT) on immune parameters, antioxidant capacity, and digestive enzymes of E. sinensis under acute ammonia nitrogen stress. The results showed that ammonia-N stress significantly decreased the antibacterial ability of crabs, nevertheless MT could significantly improve it under ammonia-N stress (P < 0.05). Ammonia-N group hemolymph antioxidant capacity indicators (T-AOC, T-SOD, GSH-Px) were significantly decreased than control (p < 0.05), while the MT ammonia-N group hemolymph T-SOD activity significantly increased than ammonia-N group (p < 0.05). For hepatopancreas, ammonia-N group GSH-PX activity significantly decreased than control group, but MT ammonia-N group was significant increased than ammonia-N (p < 0.05). Ammonia-N stress has significantly increased the content of MDA in hemolymph and hepatopancreas (p < 0.05), but MT ammonia-N treatment significantly decreased than ammonia-N group (p < 0.05). Compared with the control group, ammonia-N significantly reduced the activities of Trypsin in the intestine and hepatopancreas (p < 0.05), while MT ammonia-N group can significantly improve the intestinal trypsin activity than ammonia-N (p < 0.05). The intestinal microbiota of E. sinensis results showed that ammonia-N stress significantly decreased the relative abundance of Bacteroidetes (p < 0.05). Ammonia-N stress significantly decreased the Dysgonomonas and Rubellimicrobium, and the Citrobacter significantly increased. In summary, melatonin has a protective effect on E. sinensis under ammonia-N stress. Acute ammonia-N stress may lead to the decrease of probiotics and the increase of pathogenic bacteria, which may be closely related to the impairment of digestive function and immune function.


Subject(s)
Ammonia/pharmacology , Brachyura/drug effects , Gastrointestinal Microbiome/drug effects , Melatonin/pharmacology , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Brachyura/immunology , Brachyura/metabolism , Brachyura/microbiology , Dietary Supplements , Hemolymph/drug effects , Hemolymph/immunology , Hepatopancreas/drug effects , Hepatopancreas/immunology , Hepatopancreas/pathology , Immunity, Innate , Oxidative Stress , Protective Agents/pharmacology , Stress, Physiological/drug effects
8.
Carbohydr Polym ; 269: 118334, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294344

ABSTRACT

To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/therapeutic use , Gentamicins/therapeutic use , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Penaeidae/drug effects , Animals , Apoptosis/drug effects , Chitosan/chemical synthesis , Cysteine Endopeptidases/metabolism , Dietary Supplements , Gentamicins/chemical synthesis , Hemocytes/metabolism , Hepatopancreas/drug effects , Hepatopancreas/microbiology , Hepatopancreas/pathology , Immunologic Factors/chemical synthesis , Penaeidae/immunology , Penaeidae/metabolism , Penaeidae/microbiology , Phagocytes/metabolism , Sterol Esterase/metabolism , Vesicular Transport Proteins/metabolism , Vibrio parahaemolyticus/pathogenicity
9.
Toxins (Basel) ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204290

ABSTRACT

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg-1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


Subject(s)
Dinoflagellida , Marine Toxins/metabolism , Mytilus/metabolism , Animals , Gills/drug effects , Gonads/drug effects , Hepatopancreas/drug effects , Marine Toxins/toxicity , Muscles/drug effects , Seawater , Temperature , Tissue Distribution
10.
Fish Shellfish Immunol ; 116: 140-149, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34256134

ABSTRACT

Most antibiotics, insecticides, and other chemicals used in agricultural and fishery production tend to persist in the environment. Fenvalerate, sulfide gatifloxacin, and ridomil are widely used in aquaculture as antibacterial, antifungal, and antiparasitic drugs; however, their toxicity mechanism remains unclear. Thus, we herein analyzed the effects of these three drugs on the hepatopancreas of Procambarus clarkii at the transcriptome level. Twelve normalized cDNA libraries were constructed using RNA extracted from P. clarkii after treatment with fenvalerate, sulfide gatifloxacin, or ridomil and from an untreated control group, followed by Kyoto Encyclopedia of Genes and Genomes pathway analysis. In the control vs fenvalerate and control vs sulfide gatifloxacin groups, 14 and seven pathways were significantly enriched, respectively. Further, the effects of fenvalerate and sulfide gatifloxacin were similar on the hepatopancreas of P. clarkii. We also found that the expression level of genes encoding senescence marker protein-30 and arylsulfatase A was downregulated in the sulfide gatifloxacin group, indicating that sulfide gatifloxacin accelerated the apoptosis of hepatopancreatocytes. The expression level of major facilitator superfamily domain containing 10 was downregulated, implying that it interferes with the ability of the hepatopancreas to metabolize drugs. Interestingly, we found that Niemann pick type C1 and glucosylceramidase-ß potentially interact with each other, consequently decreasing the antioxidant capacity of P. clarkii hepatopancreas. In the fenvalerate group, the downregulation of the expression level of xanthine dehydrogenase indicated that fenvalerate affected the immune system of P. clarkii; moreover, the upregulation of the expression level of pancreatitis-associated protein-2 and cathepsin C indicated that fenvalerate caused possible inflammatory pathological injury to P. clarkii hepatopancreas. In the ridomil group, no pathway was significantly enriched. In total, 21 genes showed significant differences in all three groups. To conclude, although there appears to be some overlap in the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil, further studies are warranted.


Subject(s)
Alanine/analogs & derivatives , Anti-Bacterial Agents/toxicity , Astacoidea/drug effects , Fungicides, Industrial/toxicity , Gatifloxacin/toxicity , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Alanine/toxicity , Animals , Astacoidea/genetics , Gene Expression Profiling , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Transcriptome/drug effects
11.
Article in English | MEDLINE | ID: mdl-34153506

ABSTRACT

To examine the relationship between heavy metal accumulation in mitochondria and their respiration function in fish during in vivo exposure, juvenile Spinibarbus sinensis were exposed to different waterborne cadmium (Cd) concentrations for up to 28 days. We measured the state III respiration rate and cytochrome c oxidase (CCO) activity of mitochondria in hepatopancreas and kidney and the accumulated Cd concentrations in mitochondria and heat-stable protein (HSP) fractions. Dose- and time-dependent Cd accumulation occurred at different levels in both organs, but was lower in hepatopancreas. When hepatopancreas mitochondrial Cd concentrations in Cd-exposed groups were > 5.5 µg/g dwt, their state III respiration rates were significantly lower than the control. CCO activity of hepatopancreas mitochondria exhibited decreasing dose- and time-dependent trends. However, kidney mitochondria respiratory activities were not affected significantly by Cd exposure. Cd concentrations in kidney HSP fraction were 2-5 times higher than in hepatopancreas under all exposure conditions, and were mainly present as non-deleterious metallothionein (MT)-Cd complexes. These results suggest that Cd accumulation occurred in hepatopancreas and kidney mitochondria of S. sinensis following waterborne Cd exposure, which significantly inhibited the respiration function of hepatopancreas mitochondria but did not have a deleterious effect on kidney mitochondria. The inhibitory pattern of hepatopancreas mitochondrial Cd concentrations related to function exhibited threshold and saturation effects, suggesting the capacity of S. sinensis to manage Cd toxicity. The difference in the relative proportion of Cd occurring as MT-Cd complexes in organs likely causes the organ-specific effects of Cd on hepatopancreas and kidney mitochondrial function.


Subject(s)
Cadmium/toxicity , Cyprinidae , Hepatopancreas/drug effects , Kidney/drug effects , Mitochondria/metabolism , Water Pollutants, Chemical/toxicity , Animals , Cadmium/chemistry , Cadmium/metabolism , Humans , Oxygen Consumption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
12.
Fish Shellfish Immunol ; 114: 320-329, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33965524

ABSTRACT

Xiao-Chaihu-Decoction (XCHD), a classical traditional Chinese medicine with diverse biological activities, is widely applied to prevent and treat many human diseases. Effects of dietary XCHD on growth performance, immune response, detoxification system, intestinal microbiota and resistance against aflatoxin B1(AFB1) of Litopenaeus vannamei was studied. Four isonitrogenous and isolipidic diets were formulated to contain 0, 1, 2, and 5 g/kg (control, XCHD1, XCHD2 and XCHD3) of XCHD, respectively. Seven hundred and eighty shrimp (1.16 ± 0.09 g) were assigned randomly to 12 tanks (400 L, three tanks each group, 65 shrimp in each tank) for 6 weeks. After sampling, 25 shrimp from each tank were selected for a 2-week AFB1 (2500 µg/kg) challenge experiment. The results indicated that the final weight, weight gain and specific growth rate in XCHD2 and XCHD3 groups were significantly increased compared to control. The protease, amylase, superoxide dismutase (SOD), glutathione s-transferase (GST), sulfotransferase (SULT) activities, total antioxidant capacity (T-AOC) and glutathione (GSH) contents in hepatopancreas were significantly increased in XCHD3 groups and the expressions of immune-related genes (Toll, Dorsal and Cru) in hepatopancreas were significantly up-regulated in XCHD2 and XCHD3 groups. High-throughput sequencing analysis revealed that the abundance of Proteobacteria decreased and the abundances of Bacteroidetes increased in XCHD2 and XCHD3 groups. Additionally, AFB1 challenge experiments showed that AFB1 caused histological damage to the hepatopancreas and significantly increased the levels of malondialdehyde (MDA) and protein carbonylation (PC) in hepatopancreas as well as the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Nevertheless, XCHD could effectively alleviated the growth toxicity, immunosuppression and macromolecular damage caused by AFB1 to shrimp by inhibiting the Phase I enzyme and enhancing Phase II enzyme and antioxidant system.


Subject(s)
Dietary Supplements , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Penaeidae , Aflatoxin B1/toxicity , Animal Feed , Animals , Diet , Hepatopancreas/drug effects , Random Allocation
13.
Article in English | MEDLINE | ID: mdl-33862233

ABSTRACT

Deltamethrin (Del), a commonly used broad-spectrum insecticide, has been reported to have a toxic effect on aquatic animals, but knowledge in freshwater prawns is limited. This study revealed that Del is highly toxic to Macrobrachium nipponens with the 24 h, 48 h, 72 h, and 96 h LC50 values to be 0.268, 0.165, 0.104, and 0.066 µg/L, respectively. To further investigate the toxic effect of Del in M. nipponense and the reversibility of damage, prawns were exposed to 0.05 µg/L Del for four days and then transferred into fresh water for seven days. Histopathological examination, oxidative stress, hepatopancreas function, respiration system, and immune system were analyzed through multiple biomarkers. Results showed that Del exposure caused severe histopathological damage to hepatopancreas and gill in M. nipponense, and the prominent decrease of acid phosphatase (ACP) and alkaline phosphatase (AKP) activity further enhanced the hepatopancreas damage; the accumulation of malonaldehyde (MDA) and hydrogen peroxide (H2O2), and the decrease of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, indicated severe oxidative stress caused by Del. Besides, Del exposure also induced remarkably increased lactic acid (LD) level, decreased lactate dehydrogenase (LDH) activity, and decreased expression of immune-related genes, which demonstrated the respiration disruption and immunosuppression caused by Del. After 7-day decontamination in freshwater, the indicator of hepatopancreas function (ACP and AKP activity) and respiration (LD level and LDH activity) improved to the control group level. However, the histopathological damage and the biomarker in oxidative stress and immune system did not recover to the initial level.


Subject(s)
Insecticides/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Palaemonidae/drug effects , Pyrethrins/toxicity , Animals , Gills/drug effects , Gills/pathology , Hepatopancreas/drug effects , Hepatopancreas/pathology , Palaemonidae/immunology , Water Pollutants, Chemical/toxicity
14.
Ecotoxicol Environ Saf ; 214: 112067, 2021 May.
Article in English | MEDLINE | ID: mdl-33640724

ABSTRACT

Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 µg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 µg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 µg/L and 0.08 µg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 µg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 µg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 µg/L and 0.32 µg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.


Subject(s)
Nitriles/toxicity , Palaemonidae/physiology , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/metabolism , Biomarkers/metabolism , Fresh Water , Gills/metabolism , Hepatopancreas/drug effects , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Palaemonidae/drug effects , Pyrethrins/pharmacology , Superoxide Dismutase/metabolism
15.
Ecotoxicol Environ Saf ; 211: 111896, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33440267

ABSTRACT

Maduramicin, an extensively used anticoccidial drug, has been introduced into environment due to poorly absorbed in the intestine of broiler chicken. To understand the potential ecological toxicity of maduramicin on aquatic organisms, acute and subacute toxicity, hemolymph biochemistry, histopathology and the expressions of drug metabolism and stress response genes of crayfish (Procambius clarkii) were investigated in this study. For the first time, the 96 h median lethal concentration (LC50) of maduramicin on crayfish was 67.03 mgL-1 with a 95% confidence interval (54.06-81.32 mgL-1). Then, the crayfish were exposed to 0.7 mgL-1 (1/100 LC50), 3.5 mgL-1 (1/20 LC50) and 7.0 mgL-1 (1/10 LC50) maduramicin for 28 days. Maduramicin significantly altered biochemical parameters including AST, ALT, CK, LDH and ALP of hemolymph in crayfish at several time points. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of crayfish gills, hepatopancreas and abdominal muscle were significantly decreased or elevated by different concentrations of maduramicin treatment at varying time points. Furthermore, histopathological damage of crayfish gills, hepatopancreas and abdominal muscle were observed in a concentration-dependent manner. The expressions of metabolic and stress response genes (CYP450, GST, COX1, COX2, HSP70 and MT) in hepatopancreas of crayfish were significantly up-regulated by maduramicin (7.0 mgL-1) treatment for 8 h to 7 d, and returned to normal levels after the removal of maduramicin for 3-7 days. In conclusion, our findings demonstrated that environmental exposure of maduramicin threaten to the health of crayfish living in the areas nearby livestock farms or pharmaceutical factory. Crayfish exhibited resistance to the stress of maduramicin via activating drug metabolite and detoxification pathways.


Subject(s)
Anti-Bacterial Agents/toxicity , Astacoidea/physiology , Lactones/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/metabolism , Astacoidea/drug effects , Catalase/metabolism , Gills/drug effects , Glutathione Peroxidase/metabolism , Hemolymph/metabolism , Hepatopancreas/drug effects , Inactivation, Metabolic , Oxidative Stress/drug effects , Seafood , Superoxide Dismutase/metabolism
16.
Ecotoxicol Environ Saf ; 208: 111645, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396165

ABSTRACT

The effects of chloridazon (Ch) and its metabolite chloridazon-desphenyl (Ch-D) at the environmentally relevant concentrations of 0.45 µg/L and 2.7 µg/L on signal crayfish Pacifastacus leniusculus were assessed in a 30-day exposure followed by a 15-day depuration period. Locomotion, biochemical haemolymph profile, oxidative and antioxidant parameters, and histopathology were evaluated. Crayfish exposed to Ch at 0.45 µg/L and 2.7 µg/L showed significantly (p < 0.01) higher CAT activity and GSH level in hepatopancreas and gill compared to controls. The concentration of Ch at 2.7 µg/L was associated with significantly (p < 0.01) higher levels of GLU, LACT, ALT, AST in haemolymph compared to controls. Chloridazon-desphenyl exposure at both tested concentrations caused significantly higher (p < 0.01) GLU, LACT, ALT, AST, NH3, and Ca in haemolymph; lipid peroxidation (TBARS) levels in hepatopancreas; and CAT activity and GSH level in hepatopancreas and gill. Alterations of structure including focal dilatation of tubules, increased number of fibrillar cells, and haemocyte infiltration in the interstitium were observed with 2.7 µg/L Ch and with both Ch-D exposures. Locomotion patterns did not vary significantly among groups. A 15-day recovery period was insufficient to restore normal physiological parameters in exposed groups. Chloridazon and its metabolite Ch-D exerts harmful effects on crayfish.


Subject(s)
Astacoidea/drug effects , Herbicides/toxicity , Pyridazines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Astacoidea/physiology , Gills/drug effects , Gills/metabolism , Gills/pathology , Hemolymph/cytology , Hemolymph/drug effects , Hemolymph/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Hepatopancreas/pathology , Herbicides/metabolism , Oxidative Stress/drug effects , Pyridazines/metabolism , Water Pollutants, Chemical/metabolism
17.
Drug Chem Toxicol ; 44(1): 30-38, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31257991

ABSTRACT

Aquatic animals are vulnerable to arsenic (As) toxicity. However, rarely does a contaminant occur alone in the aquatic environment. For this reason, this study was conducted to evaluate whether titanium dioxide nanoparticles (nTiO2) can interfere with the effects induced by As in Litopenaeus vannamei. Arsenic accumulation and metabolic capacity; expression and enzymatic activity of GSTΩ (glutathione-S-transferase omega isoform); antioxidant responses such as GSH, GR, and GST (reduced glutathione levels, glutathione reductase, and glutathione-S-transferase activity, respectively); and lipid peroxidation in the gills and hepatopancreas of shrimp were evaluated. The results are summarized as follows: (1) higher accumulation of As occurred in both tissues after exposure to As alone; (2) co-exposure to nTiO2 affected the capacity to metabolize As; (3) GSTΩ gene expression was not modified, but its activity was decreased by co-exposure to both contaminants; (4) As alone increased the GSH levels in the hepatopancreas, and co-exposure to nTiO2 reduced these levels in both tissues; (5) a decrease in the GST activity in the gills occurred with all treatments; (6) in the gills, GR activity was increased by As, and nTiO2 reversed this increase, whereas in the hepatopancreas co-exposure inhibited enzyme activity; (7) only in the hepatopancreas lipid damage was observed when animals were exposed to As or nTiO2 but not in co-exposure. The results showed that the As induces toxic effects in both tissues of shrimp and that co-exposure to nTiO2 can potentiate these effects and decrease the capacity to metabolize As, favoring the accumulation of more toxic compounds.


Subject(s)
Antioxidants/metabolism , Arsenites/toxicity , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Penaeidae/drug effects , Sodium Compounds/toxicity , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arsenites/metabolism , Gills/drug effects , Gills/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Lipid Peroxidation/drug effects , Penaeidae/metabolism , Sodium Compounds/metabolism , Tissue Distribution , Water Pollutants, Chemical/metabolism
18.
Aquat Toxicol ; 230: 105700, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33285378

ABSTRACT

Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.


Subject(s)
Hepatopancreas/drug effects , Palaemonidae/drug effects , Sulfides/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Acclimatization , Animals , China , Down-Regulation , Hepatopancreas/metabolism , Hepatopancreas/pathology , Palaemonidae/genetics , Palaemonidae/metabolism , Rivers/chemistry , Up-Regulation
19.
Aquat Toxicol ; 230: 105704, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33316749

ABSTRACT

Recurrent dinoflagellate blooms of Alexandrium catenella expose the economically and ecologically important Southern Rock Lobster in Tasmania to paralytic shellfish toxins (PST), and it is unknown if PST accumulation adversely affects lobster performance, health and catchability. In a controlled aquaculture setting, lobsters were fed highly contaminated mussels to accumulate toxin levels in the hepatopancreas (mean of 6.65 mg STX.2HCl equiv. kg-1), comparable to those observed in nature. Physiological impact of PST accumulation was comprehensively assessed by a range of behavioural (vitality score, righting ability and reflex impairment score), health (haemocyte count, bacteriology, gill necrosis and parasite load), nutritional (hepatopancreas index and haemolymph refractive index) and haemolymph biochemical (21 parameters including electrolytes, metabolites, and enzymes) parameters during a 63 day period of uptake and depuration of toxins. Exposure to PST did not result in mortality nor significant changes in the behavioural, health, or nutritional measures suggesting limited gross impact on lobster performance. Furthermore, most haemolymph biochemical parameters measured exhibited no significant difference between control and exposed animals. However, the concentration of potassium in the haemolymph increased with PST, whilst the concentration of lactate and the sodium:potassium ratio decreased with PST. In addition, exposed lobsters showed a hyperglycaemic response to PST exposure, indicative of stress. These findings suggest that PST accumulation results in some measurable indicators of stress for lobsters. However, these changes are likely within the adaptive range for Jasus edwardsii and do not result in a significant impairment of gross performance. Our findings support previous conclusions that crustaceans are relatively tolerant to PST and the implications for the lobster fishery are discussed.


Subject(s)
Bioaccumulation/drug effects , Palinuridae/metabolism , Saxitoxin/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/metabolism , Dinoflagellida/metabolism , Food Chain , Gills/drug effects , Gills/metabolism , Hemocytes/drug effects , Hemocytes/metabolism , Hemolymph/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Saxitoxin/metabolism , Shellfish , South Australia , Water Pollutants, Chemical/metabolism
20.
Article in English | MEDLINE | ID: mdl-33148510

ABSTRACT

Methoprene-tolerant (Met) belongs to the basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family of nuclear transcriptional regulators and is a leading candidate receptor for juvenile hormone (JH III) in insects. Methyl farnesoate (MF) is a de-epoxide form of JH III that regulates many developmental processes in crustaceans, including reproduction, molting, and morphogenesis, much like JH III in insects. In this study, the full-length cDNA for Met was cloned from the Chinese mitten crab (Eriocheir sinensis) (EsMet). The amino acid sequence of EsMet contains three conserved domains (bHLH, PAS-A, and PASB) characteristic of the bHLH-PAS family, having six conserved amino acid residues specifically responsible for JH or MF binding. Tissue distribution analysis revealed that EsMet mRNA is highly expressed in the hepatopancreas. In addition, EsMet and EsVg expression in the hepatopancreas were found to be significantly increased in early endogenous vitellogenic oocytes (stage II) during ovarian development, and the hemolymph MF titer was significantly increased in late exogenous vitellogenic oocytes (stage III), indicating that EsMet is involved in vitellogenesis regulation. In vitro, MF addition markedly upregulated EsMet and EsVg expression in hepatopancreatic tissue, but only EsVg was induced in ovarian tissue. In vivo, EsMet and EsVg expression in the hepatopancreas were both significantly and synchronously increased after MF injection, but not in the ovaries. In addition, EsMet and EsVg expression were upregulated in the hepatopancreas after eyestalk ablation, while only EsVg expression was induced in the ovaries. Thus, our results indicate that Met may act as a receptor for MF in MF-mediated vitellogenesis in crustaceans.


Subject(s)
Brachyura/physiology , Fatty Acids, Unsaturated/pharmacology , Methoprene/pharmacology , Amino Acid Sequence , Animals , Brachyura/drug effects , Cloning, Molecular/methods , DNA, Complementary/genetics , Female , Hemolymph/drug effects , Hemolymph/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Ovary/drug effects , Ovary/metabolism , Phylogeny , Reproduction , Vitellogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...