Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Nat Plants ; 10(6): 1027-1038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831045

ABSTRACT

In bryophytes, sexual reproduction necessitates the release of motile sperm cells from a gametophyte into the environment. Since 1856, this process, particularly in liverworts, has been known to depend on water. However, the molecular mechanism underlying this phenomenon has remained elusive. Here we identify the plasma membrane protein MpMLO1 in Marchantia polymorpha, a model liverwort, as critical for sperm discharge from antheridia. The MpMLO1-expressing tip cells among the sperm-wrapping jacket cells undergo programmed cell death upon antheridium maturation to facilitate sperm discharge after the application of water and even hypertonic solutions. The absence of MpMLO1 leads to reduced cytoplasmic Ca2+ levels in tip cells, preventing cell death and consequently sperm discharge. Our findings reveal that MpMLO1-mediated programmed cell death in antheridial tip cells, regulated by cytosolic Ca2+ dynamics, is essential for sperm release, elucidating a key mechanism in bryophyte sexual reproduction and providing insights into terrestrial plant evolution.


Subject(s)
Marchantia , Plant Proteins , Marchantia/physiology , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Reproduction/physiology , Hepatophyta/physiology , Hepatophyta/metabolism , Hepatophyta/genetics , Apoptosis
2.
BMC Ecol Evol ; 24(1): 63, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741051

ABSTRACT

The geographical and ecological patterns of morphological disparity are crucial to understand how species are assembled within communities in the context of the evolutionary history, morphological evolution and ecological interactions. However, with limited exceptions, rather few studies have been conducted on the global pattern of disparity, particularly in early land plants. Here we explored the spatial accumulation of disparity in a morphologically variable and species rich liverwort genus Frullania in order to test the hypothesis of latitude disparity gradient. We compiled a morphological data set consisting of eight continuous traits for 244 currently accepted species, and scored the species distribution into 19 floristic regions worldwide. By reconstructing the morphospace of all defined regions and comparisons, we identified a general Gondwana-Laurasia pattern of disparity in Frullania. This likely results from an increase of ecological opportunities and / or relaxed constraints towards low latitudes. The lowest disparity occurred in arid tropical regions, largely due to a high extinction rate as a consequence of paleoaridification. There was weak correlation between species diversity and disparity at different spatial scales. Furthermore, long-distance dispersal may have partially shaped the present-day distribution of Frullania disparity, given its frequency and the great contribution of widely distributed species to local morphospace. This study not only highlighted the crucial roles of paleoenvironmental changes, ecological opportunities, and efficient dispersal on the global pattern of plant disparity, but also implied its dependence on the ecological and physiological function of traits.


Subject(s)
Hepatophyta , Hepatophyta/genetics , Biological Evolution , Biodiversity , Plant Dispersal
3.
New Phytol ; 242(6): 2817-2831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587065

ABSTRACT

RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.


Subject(s)
Hepatophyta , Phylogeny , RNA Editing , RNA Editing/genetics , Hepatophyta/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genes, Plant , Amino Acid Sequence
4.
Chembiochem ; 25(8): e202400104, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38372483

ABSTRACT

The microbial type sesquiterpene synthase RlMTPSL4 from the liverwort Radula lindenbergiana was investigated for its products, showing the formation of several sesquiterpene hydrocarbons. The main product was structurally characterized as the new compound 4,5-diepi-isoishwarane, while the side products included the known hydrocarbons germacrene A, α-selinene, eremophilene and 4,5-diepi-aristolochene. The cyclization mechanism towards 4,5-diepi-isoishwarane catalyzed by RlMTPSL4 was investigated through isotopic labeling experiments, revealing the stereochemical course for the deprotonation step to the neutral intermediate germacrene A, a reprotonation for its further cyclization, and a 1,2-hydride shift along the cascade. The absolute configuration of 4,5-diepi-isoishwarane was determined using a stereoselective deuteration approach, revealing an absolute configuration typically observed for a microbial type sesquiterpene.


Subject(s)
Alkyl and Aryl Transferases , Hepatophyta , Sesquiterpenes , Sesquiterpenes, Germacrane , Sesquiterpenes/chemistry , Cyclization
5.
J Nat Prod ; 87(4): 1124-1130, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38419347

ABSTRACT

Seven new terpenoids, including six sacculatane diterpenoids plagiochilarins A-F (1-6), and one ent-2,3-seco-aromandrane sesquiterpenoid plagiochilarin H (8) with a 6/7/3/5 tetracyclic scaffold, alongside three known compounds, were obtained from the Chinese liverwort Plagiochila nitens Inoue. Plagiochilarin B (2) was unpredictably converted to the more stable artifact 7 under acid catalysis through cyclic ether formation. The reaction mechanism was reasonably deduced and experimentally verified. The structures of these terpenoids were determined by analysis of MS and NMR spectroscopic data and single-crystal X-ray diffraction. The inhibitory effect of all of the isolates was evaluated on the growth of two C. albicans strains, wild strain SC5314 and efflux pump-deficient strain DSY654. However, only plagiochilarin H (8) showed a MIC value of 16 µg/mL against C. albicans DSY654.


Subject(s)
Candida albicans , Diterpenes , Hepatophyta , Hepatophyta/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , China , Candida albicans/drug effects , Molecular Structure , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Crystallography, X-Ray
6.
Org Biomol Chem ; 22(7): 1360-1364, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38240688

ABSTRACT

A sesquiterpene synthase from the liverwort Radula lindenbergiana was characterised and shown to produce the new sesquiterpene hydrocarbon (3R,9R)-asterisca-1,6-diene, besides small amounts of pentalenene. The biosynthesis of asterisca-1,6-diene was studied through isotopic labelling experiments, giving additional insights into the long discussed biosynthesis of pentalenene.


Subject(s)
Hepatophyta , Sesquiterpenes , Cyclopentanes , Hydrocarbons , Nitric Oxide Synthase
7.
J Nat Prod ; 87(1): 132-140, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38157445

ABSTRACT

Mylnudones A-G (1-7), unprecedented 1,10-seco-aromadendrane-benzoquinone-type heterodimers, and a highly rearranged aromadendrane-type sesquiterpenoid (8), along with four known analogs (9-12), were isolated from the liverwort Mylia nuda. Compounds 1-6 and 7, bearing tricyclo[6.2.1.02,7] undecane and tricyclo[5.3.1.02,6] undecane backbones, likely formed via a Diels-Alder reaction and radical cyclization, respectively. Their structures were determined by spectroscopic analysis, computational calculation, and single-crystal X-ray diffraction analysis. Dimeric compounds displayed cytoprotective effects against glutamic acid-induced neurological deficits.


Subject(s)
Alkanes , Hepatophyta , Sesquiterpenes, Guaiane , Sesquiterpenes , Hepatophyta/chemistry , Molecular Structure , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , China
8.
Physiol Plant ; 175(6): e14071, 2023.
Article in English | MEDLINE | ID: mdl-38148220

ABSTRACT

In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.


Subject(s)
Ammonium Compounds , Arabidopsis , Hepatophyta , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Arabidopsis/metabolism , Amino Acid Sequence , Hepatophyta/genetics , Hepatophyta/metabolism , Ammonium Compounds/metabolism
9.
Molecules ; 28(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959695

ABSTRACT

Liverworts contain a large number of biologically active compounds that are synthesised and stored in their oil bodies. However, knowledge about the chemical composition of individual species is still incomplete. The subject of the study was Calypogeia integristipula, a species representing leafy liverworts. Plant material for chemotaxonomic studies was collected from various locations in Poland. The chemical composition was determined in 74 samples collected from the natural environment in 2021 and 2022 in three growing seasons: spring, summer and autumn, and for comparison with samples originating from in vitro culture. The plants were classified as Calypogeia integristipula on the basis of morphological characteristics, oil bodies, and DNA markers. The volatile organic compounds (VOCs) from the biological material were extracted by headspace solid phase microextraction (HS-SPME). The samples were then analysed by gas chromatography-mass spectrometry (GC-MS). A total of 79 compounds were detected, of which 44 compounds were identified. The remaining compounds were described using the MS fragmentation spectrum. Cyclical changes in the composition of compounds associated with the growing season of Calypogeia integristipula were observed. Moreover, samples from in vitro culture and samples taken from the natural environment were shown to differ in the composition of chemical compounds. In terms of quantity, among the volatile compounds, compounds belonging to the sesquiterpene group (46.54-71.19%) and sesqiuterpenoid (8.12-22.11%) dominate. A smaller number of compounds belong to aromatic compounds (2.30-10.96%), monoterpenes (0.01-0.07%), monoterpenoids (0.02-0.33%), and aliphatic hydrocarbons (1.11-6.12%). The dominant compounds in the analysed liverworts were: anastreptene (15.27-31.14%); bicyclogermacrene (6.99-18.09%), 4,5,9,10-dehydro-isolongifolene (2.00-8.72%), palustrol (4.95-9.94%), spathulenol (0.44-5.11%).


Subject(s)
Hepatophyta , Volatile Organic Compounds , Seasons , Gas Chromatography-Mass Spectrometry/methods , Monoterpenes/analysis , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods
10.
J Agric Food Chem ; 71(49): 19551-19567, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38032113

ABSTRACT

Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 µM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.


Subject(s)
Diterpenes , Hepatophyta , Animals , Mice , NF-kappa B/metabolism , Hepatophyta/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , China , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism
11.
PeerJ ; 11: e16284, 2023.
Article in English | MEDLINE | ID: mdl-37901454

ABSTRACT

Background: The genus Aneura Dumort. is a simple thalloid liverwort with cosmopolitan distributions. Species circumscription is problematic in this genus due to a limited number of morphological traits. Two species are currently reported from Thailand, including A. maxima and A. pinguis. At the global scale, A. pinguis is considered a cryptic species, as the species contains several distinct genetic groups without clear morphological differentiation. At the same time, the identity of A. maxima remains unclear. In this work, we examined the level of diversity of Aneura species found in Thailand using both morphological and molecular data. Methods: We measured the morphological traits and generated the molecular data (four markers: trnL-F, trnH-psbA, rbcL, and ITS2) from the Thai specimens. The concatenated dataset was then used to reconstruct phylogeny. Species delimitation with GMYC, bPTP, ASAP, and ABGD methods was performed to estimate the number of putative species within the genus. Results: The samples of A. pinguis formed several clades, while A. maxima sequences from Poland were grouped in their clade and nested within another A. pinguis clade. We could not recover a sample of A. maxima from Thailand, even from the reported locality. Two putative species were detected among Thai Aneura samples. However, no morphological trait could distinguish the specimens from the two observed genetic groups. Discussion: The previously observed paraphyletic nature of A. pinguis globally was also found among Thai samples, including several putative species. However, we could not confirm the identity of A. maxima from Thai specimens. The previous report could result from misidentification and problematic species circumscription within Aneura. The results highlighted the need to include multiple lines of evidence for the future taxonomic investigation of the group.


Subject(s)
Hepatophyta , Hepatophyta/genetics , Thailand , Phylogeny , Poland
12.
Am J Bot ; 110(11): e16249, 2023 11.
Article in English | MEDLINE | ID: mdl-37792319

ABSTRACT

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Subject(s)
Bryophyta , Hepatophyta , Phylogeny , Bryophyta/genetics , Plants/genetics , Hepatophyta/genetics
13.
New Phytol ; 240(5): 2137-2150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37697646

ABSTRACT

Divergence times based on molecular clock analyses often differ from those derived from total-evidence dating (TED) approaches. For bryophytes, fossils have been excluded from previous assessments of divergence times, and thus, their utility in dating analyses remains unexplored. Here, we conduct the first TED analyses of the complex thalloid liverworts (Marchantiopsida) that include fossils and evaluate macroevolutionary trends in morphological 'diversity' (disparity) and rates. Phylogenetic analyses were performed on a combined dataset of 130 discrete characters and 11 molecular markers (sampled from nuclear, plastid and mitochondrial genomes). Taxon sampling spanned 56 extant species - representing all the orders within Marchantiophyta and extant genera within Marchantiales - and eight fossil taxa. Total-evidence dating analyses support the radiation of Marchantiopsida during Late Silurian-Early Devonian (or Middle Ordovician when the outgroup is excluded) and that of Ricciaceae in the Middle Jurassic. Morphological change rate was high early in the history of the group, but it barely increased after Late Cretaceous. Disparity-through-time analyses support a fast increase in diversity until the Middle Triassic (c. 250 Ma), after which phenotypic evolution slows down considerably. Incorporating fossils in analyses challenges previous assumptions on the affinities of extinct taxa and indicates that complex thalloid liverworts radiated c. 125 Ma earlier than previously inferred.


Subject(s)
Bryophyta , Hepatophyta , Phylogeny , Hepatophyta/genetics , Fossils , Plastids/genetics , Biological Evolution
14.
Curr Biol ; 33(17): 3597-3609.e3, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37557172

ABSTRACT

Liverworts comprise one of six primary land plant lineages, with the predicted origin of extant liverwort diversity dating to the Silurian. The ancestral liverwort has been inferred to have been dioicous (unisexual) with chromosomal sex determination in which the U chromosome of females and the V chromosome of males were dimorphic with an extensive non-recombining region. In liverworts, sex is determined by a U chromosomal "feminizer" gene that promotes female development, and in its absence, male development ensues. Monoicy (bisexuality) has independently evolved multiple times within liverworts. Here, we explore the evolution of monoicy, focusing on the monoicous species Ricciocarpos natans, and propose that the evolution of monoicy in R. natans involved the appearance of an aneuploid spore that possessed both U and V chromosomes. Chromosomal rearrangements involving the U chromosome resulted in distribution of essential U chromosome genes, including the feminizer, to several autosomal locations. By contrast, we infer that the ancestral V chromosome was inherited largely intact, probably because it carries numerous dispersed "motility" genes distributed across the chromosome. The genetic networks for sex differentiation in R. natans appear largely unchanged except that the feminizer is developmentally regulated, allowing for temporally separated differentiation of female and male reproductive organs on a single plant. A survey of other monoicous liverworts suggests that similar genomic rearrangements may have occurred repeatedly in lineages transitioning to monoicy from dioicy. These data provide a foundation for understanding how genetic networks controlling sex determination can be subtly rewired to produce profound changes in sexual systems.


Subject(s)
Hepatophyta , Hepatophyta/genetics , Sex Chromosomes/genetics , Plants/genetics , Evolution, Molecular
15.
Phytochemistry ; 214: 113796, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499849

ABSTRACT

- Seven previously undescribed ent-eudesmane sesquiterpenoids (1-7), as well as seven known analogs (8-14), were isolated from the Chinese liverwort Chiloscyphus polyanthus var. rivularis. Their structures were established based on comprehensive spectroscopy analysis, electronic circular dichroism calculations, as well as biosynthetic considerations. The cytotoxicity against HepG2 (Human hepatocellular carcinomas) cancer cell line, and antifungal activity against Candida albicans SC5314 of all isolated ent-eudesmane sesquiterpenoids were preliminarily tested, results showed that the tested compounds did not display obvious cytotoxicity and antifungal activities under the tested concentration.


Subject(s)
Antifungal Agents , Antineoplastic Agents , Hepatophyta , Sesquiterpenes, Eudesmane , Sesquiterpenes , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , China , Hepatophyta/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes, Eudesmane/chemistry , Hep G2 Cells/drug effects , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Proc Biol Sci ; 290(2000): 20222347, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37282533

ABSTRACT

Despite the vast diversity of phytophagous insects that feed on vascular plants (tracheophytes), insects that feed on bryophytes remain understudied. Agromyzidae, one of the most species-rich phytophagous clades in Diptera, consists mainly of leaf-mining species that feed on tracheophytes. However, a recent discovery of thallus-mining species on liverworts and hornworts within the Liriomyza group of Phytomyzinae provides an opportunity to study host shifts between tracheophytes and bryophytes. This study aimed to explore the origin and diversification of thallus-miners and estimate the pattern and timing of host shifts. Phylogenetic analysis of Phytomyzinae has revealed that the thallus-mining agromyzids formed a separate clade, which was sister to a fern pinnule-miner. The diversification of bryophyte-associated agromyzids since the Oligocene involved multiple host shifts across various bryophyte taxa. The diversification of the thallus-mining Phytoliriomyza may have occurred at the same time as the leaf-mining agromyzid flies on herbaceous plants, indicating a dynamic history of interactions between bryophytes and herbivores in angiosperms-dominated ecosystems.


Subject(s)
Anthocerotophyta , Bryophyta , Diptera , Hepatophyta , Animals , Phylogeny , Ecosystem
17.
Nat Commun ; 14(1): 3287, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311767

ABSTRACT

Marine cone snails have attracted researchers from all disciplines but early life stages have received limited attention due to difficulties accessing or rearing juvenile specimens. Here, we document the culture of Conus magus from eggs through metamorphosis to reveal dramatic shifts in predatory feeding behaviour between post-metamorphic juveniles and adult specimens. Adult C. magus capture fish using a set of paralytic venom peptides combined with a hooked radular tooth used to tether envenomed fish. In contrast, early juveniles feed exclusively on polychaete worms using a unique "sting-and-stalk" foraging behaviour facilitated by short, unbarbed radular teeth and a distinct venom repertoire that induces hypoactivity in prey. Our results demonstrate how coordinated morphological, behavioural and molecular changes facilitate the shift from worm- to fish-hunting in C. magus, and showcase juvenile cone snails as a rich and unexplored source of novel venom peptides for ecological, evolutionary and biodiscovery studies.


Subject(s)
Hepatophyta , Predatory Behavior , Animals , Acclimatization , Biological Evolution , Eggs , Fishes , Metamorphosis, Biological
18.
Curr Biol ; 33(13): 2806-2813.e6, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37321212

ABSTRACT

Stomata are distributed in nearly all major groups of land plants, with the only exception being liverworts. Instead of having stomata on sporophytes, many complex thalloid liverworts possess air pores in their gametophytes. At present, whether stomata in land plants are derived from a common origin remains under debate.1,2,3 In Arabidopsis thaliana, a core regulatory module for stomatal development comprises members of the bHLH transcription factor (TF) family, including AtSPCH, AtMUTE, and AtFAMA of subfamily Ia and AtSCRM1/2 of subfamily IIIb. Specifically, AtSPCH, AtMUTE, and AtFAMA each successively form heterodimers with AtSCRM1/2, which in turn regulate the entry, division, and differentiation of stomatal lineages.4,5,6,7 In the moss Physcomitrium patens, two SMF (SPCH, MUTE and FAMA) orthologs have been characterized, one of which is functionally conserved in regulating stomatal development.8,9 We here provide experimental evidence that orthologous bHLH TFs in the liverwort Marchantia polymorpha affect air pore spacing as well as the development of the epidermis and gametangiophores. We found that the bHLH Ia and IIIb heterodimeric module is highly conserved in plants. Genetic complementation experiments showed that liverwort SCRM and SMF genes weakly restored a stomata phenotype in atscrm1, atmute, and atfama mutant backgrounds in A. thaliana. In addition, homologs of stomatal development regulators FLP and MYB88 also exist in liverworts and weakly rescued the stomatal phenotype of atflp/myb88 double mutant. These results provide evidence not only for a common origin of all stomata in extant plants but also for relatively simple stomata in the ancestral plant.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hepatophyta , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hepatophyta/genetics , Hepatophyta/metabolism , Plant Stomata/physiology , Plants/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
19.
Sci Rep ; 13(1): 8303, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221210

ABSTRACT

Organellar genomes of liverworts are considered as one of the most stable among plants, with rare events of gene loss and structural rearrangements. However, not all lineages of liverworts are equally explored in the field of organellar genomics, and subclass Pellidae is one of the less known. Hybrid assembly, using both short- and long-read technologies enabled the assembly of repeat-rich mitogenomes of Pellia and Apopellia revealing extraordinary reduction of length in the latter which impacts only intergenic spacers. The mitogenomes of Apopellia were revealed to be the smallest among all known liverworts-109 k bp, despite retaining all introns. The study also showed the loss of one tRNA gene in Apopellia mitogenome, although it had no impact on the codon usage pattern of mitochondrial protein coding genes. Moreover, it was revealed that Apopellia and Pellia differ in codon usage by plastome CDSs, despite identical tRNA gene content. Molecular identification of species is especially important where traditional taxonomic methods fail, especially within Pellidae where cryptic speciation is well recognized. The simple morphology of these species and a tendency towards environmental plasticity make them complicated in identification. Application of super-barcodes, based on complete mitochondrial or plastid genomes sequences enable identification of all cryptic lineages within Apopellia and Pellia genera, however in some particular cases, mitogenomes were more efficient in species delimitation than plastomes.


Subject(s)
Anemone , Genome, Mitochondrial , Genome, Plastid , Hepatophyta , Phylogeny , Mitochondria
20.
Phytochemistry ; 212: 113719, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169137

ABSTRACT

Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1-9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2-6). The remaining compounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 µM, but the selectivity was not satisfactory.


Subject(s)
Hepatophyta , Primula , Primula/chemistry , Serbia , Ethers, Cyclic , Hepatophyta/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL