Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Plant Sci ; 313: 111097, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763850

ABSTRACT

Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.


Subject(s)
Echinochloa/genetics , Echinochloa/physiology , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Brazil , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Weed Control
2.
Nat Plants ; 7(7): 888-892, 2021 07.
Article in English | MEDLINE | ID: mdl-34112987

ABSTRACT

Base-editing-library-induced high density nucleotide substitutions have been applied to screen functional mutations in plants. However, due to limitations in the scope and conversion specificity of base editors, many desired mutations at pivotal protein sites may be overlooked. Here, we developed a prime-editing-library-mediated saturation mutagenesis (PLSM) method to substantially increase the diversity of amino acid substitutions at target sites for in planta screening. At six conserved residues of OsACC1, 16 types of herbicide-resistance-endowing mutations were identified. Most of these mutations exhibit reliable tolerance to aryloxyphenoxypropionate herbicides and have not been reported or applied in rice breeding. In addition, the advantage of PLSM was further shown by comparing the base-editing-mediated mutagenesis at the selected targets. The PLSM method established in this study has great potential for the direct evolution of genes related to agronomically important traits for crop improvement.


Subject(s)
Gene Editing , Gene Library , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Oryza/genetics , Oryza/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant , Mutation , Plants, Genetically Modified/genetics
3.
Plant Sci ; 300: 110631, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33180710

ABSTRACT

Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.


Subject(s)
Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/metabolism , Indoleacetic Acids/metabolism , Plant Weeds/drug effects , Signal Transduction/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Weed Control
4.
Proc Natl Acad Sci U S A ; 117(41): 25618-25627, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989136

ABSTRACT

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.


Subject(s)
Adaptation, Biological/genetics , Genetic Introgression/genetics , Plant Weeds/genetics , Zea mays/genetics , Adaptation, Biological/physiology , Europe , Evolution, Molecular , Genetic Introgression/physiology , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/pharmacology , Plant Weeds/drug effects , Plant Weeds/physiology , Zea mays/drug effects , Zea mays/physiology
5.
PLoS One ; 15(8): e0238144, 2020.
Article in English | MEDLINE | ID: mdl-32857790

ABSTRACT

The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.


Subject(s)
Amaranthus/drug effects , Amaranthus/physiology , Herbicide Resistance/physiology , Herbicides/pharmacology , Photoperiod , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Dicamba/pharmacology , Dose-Response Relationship, Drug , Ethylenes/metabolism , Phthalimides/metabolism , Plant Proteins/metabolism , Triiodobenzoic Acids/metabolism , Verapamil/metabolism
6.
Mol Plant ; 13(9): 1298-1310, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32622997

ABSTRACT

The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields, especially in rice paddies. Its evolutionary history is similar to that of bread wheat, arising through polyploidization after hybridization between a tetraploid and a diploid species. In this study, we generated and analyzed high-quality genome sequences of diploid (E. haploclada), tetraploid (E. oryzicola), and hexaploid (E. crus-galli) Echinochloa species. Gene family analysis showed a significant loss of disease-resistance genes such as those encoding NB-ARC domain-containing proteins during Echinochloa polyploidization, contrary to their significant expansionduring wheat polyploidization, suggesting that natural selection might favor reduced investment in resistance in this weed to maximize its growth and reproduction. In contrast to the asymmetric patterns of genome evolution observed in wheat and other crops, no significant differences in selection pressure were detected between the subgenomes in E. oryzicola and E. crus-galli. In addition, distinctive differences in subgenome transcriptome dynamics during hexaploidization were observed between E. crus-galli and bread wheat. Collectively, our study documents genomic mechanisms underlying the adaptation of a major agricultural weed during polyploidization. The genomic and transcriptomic resources of three Echinochloa species and new insights into the polyploidization-driven adaptive evolution would be useful for future breeding cereal crops.


Subject(s)
Echinochloa/chemistry , Plant Proteins/metabolism , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Plant Proteins/genetics
7.
J Biol Chem ; 295(30): 10307-10330, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32430396

ABSTRACT

The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Herbicide Resistance/physiology , Herbicides/pharmacology , Plant Proteins/biosynthesis , Plants/enzymology , Acclimatization , Herbicides/metabolism
8.
Int J Mol Sci ; 21(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079260

ABSTRACT

The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacid synthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.


Subject(s)
Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Brassica napus/drug effects , Brassica napus/genetics , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/pharmacology , Heredity/genetics , Alleles , Arabidopsis/genetics , Arylsulfonates , Plant Proteins/genetics , Plants, Genetically Modified , Point Mutation , Pyrimidines/pharmacology , Sulfonylurea Compounds/pharmacology
9.
PLoS One ; 15(1): e0221382, 2020.
Article in English | MEDLINE | ID: mdl-31935213

ABSTRACT

Recently, poor control of Echinochloa colona with glyphosate has been reported in no-till agriculture systems of the northern grain region (NGR) of Australia. Two experiments were conducted using 10 populations of E. colona selected from the NGR of Australia to understand differences in their growth behavior and resistance pattern. Growth studies revealed that these populations differed in plant height (53-70 cm plant-1), tiller production (30-52 tillers plant-1), leaf production (124-186 leaves plant-1) and seed head production (37-65 seed heads plant-1). Days taken to seed heads and shoot biomass in these populations ranged between 40-48 d and 21-27 g plant-1, respectively. Seed production in these populations ranged between 5380 and 10244 seeds plant-1; lowest for population B17/25 and highest for population B17/13. Correlation studies revealed that seed number plant-1 had a positive correlation with tiller number plant-1 (r = 0.73) and negative relation with days taken to seed head initiation (r = - 0.65). The glyphosate dose-response study showed a wide range of responses in these populations and the glyphosate dose required to kill 50% plants (LD50 values) was estimated between 161 to 2339 g a.e. glyphosate ha-1. LD50 values of populations B17/16, B 17/34 and B17/35 were 1086, 2339 and 1153 g ha-1, respectively, making them 6.7, 15.1 and 7.2-fold resistant to glyphosate compared with the susceptible population B17/37. Growth behavior and seed production potential in these populations had no correlation with the resistance index. These results suggest that some populations of E. colona are highly problematic; for example, population B17/34 was not only highly glyphosate-resistant, but also produced a high seed number (9300 seeds plant-1). This study demonstrated that there is a possibility of great risk with the increased use of glyphosate for managing E. colona in the NGR of Australia. The results warrant integrated weed management strategies and improved stewardship guidelines are required for managing glyphosate-resistant populations of E. colona and to restrict further movement of resistant populations to other regions of Australia.


Subject(s)
Echinochloa/growth & development , Herbicide Resistance/physiology , Plant Leaves/growth & development , Seeds/growth & development , Australia , Echinochloa/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicides/pharmacology , Plant Leaves/drug effects , Seeds/drug effects , Glyphosate
10.
J Exp Bot ; 71(1): 411-421, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31565749

ABSTRACT

The closely related sulphonamide safeners, metcamifen and cyprosulfamide, were tested for their ability to protect rice from clodinafop-propargyl, a herbicide normally used in wheat. While demonstrating that both compounds were equally bioavailable in planta, only metcamifen prevented clodinafop from damaging seedlings, and this was associated with the enhanced detoxification of the herbicide. Transcriptome studies in rice cultures demonstrated that whereas cyprosulfamide had a negligible effect on gene expression over a 4 h exposure, metcamifen perturbed the abundance of 590 transcripts. Changes in gene expression with metcamifen could be divided into three phases, corresponding to inductions occurring over 30 min, 1.5 h and 4 h. The first phase of gene induction was dominated by transcription factors and proteins of unknown function, the second by genes involved in herbicide detoxification, while the third was linked to cellular homeostasis. Analysis of the inducible genes suggested that safening elicited similar gene families to those associated with specific biotic and abiotic stresses, notably those elicited by abscisic acid, salicylic acid, and methyl jasmonate. Subsequent experiments with safener biomarker genes induced in phase 1 and 2 in rice cell cultures provided further evidence of similarities in signalling processes elicited by metcamifen and salicylic acid.


Subject(s)
Herbicide Resistance/physiology , Herbicides/pharmacology , Oryza/drug effects , Propionates/pharmacology , Pyridines/pharmacology , Gene Expression Regulation, Plant/drug effects , Oryza/physiology , Seedlings/drug effects , Seedlings/physiology , Transcription Factors/metabolism
11.
Plant Mol Biol ; 101(6): 561-574, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31621006

ABSTRACT

KEY MESSAGE: We investigated the functions of two cyanobacterial HemY protoporphyrinogen IX oxidase (PPO) genes with in vitro and in vivo assays and evaluated their applicability as resistance traits to PPO-inhibiting herbicides. We isolated HemY-type protoporphyrinogen IX oxidase (PPO) genes from cyanobacteria, OnPPO gene from Oscillatoria nigro-viridis PCC7112 and HaPPO gene from Halothece sp. PCC7418. The alignment of amino acid sequences as well as phylogenetic analyses conducted showed that OnPPO and HaPPO are classified as HemY-type PPO and are more closely related to plastidic PPOs than to mitochondrial PPOs. The PPO-deficient Escherichia coli BT3 strain, which requires heme supplementation, could obtain normal growth in the absence of heme supplementation when complemented with OnPPO and HaPPO. The enzyme assays of OnPPO, HaPPO, and Arabidopsis thaliana PPO1 (AtPPO1) proteins each revealed different kinetic properties in terms of catalytic efficiency, substrate affinity, and the degree of inhibition by PPO inhibitors. In particular, the catalytic efficiencies (kcat/Km) of OnPPO and HaPPO were approximately twofold higher than that of AtPPO1. The elution profiles of all three PPOs, acquired by size-exclusion chromatography, showed only a single peak with a molecular weight of approximately 52-54 kDa, which corresponds to a monomeric form. Moreover, functional complementation with OnPPO and HaPPO in AtPPO1-silenced Arabidopsis resulted in restored growth, whereas AtPPO1-silenced wild type Arabidopsis suffered necrotic death. In addition, we observed that overexpression of OnPPO and HaPPO in Arabidopsis conferred resistance to the PPO-inhibiting herbicides tiafenacil and saflufenacil. These results suggest that two HemY-type PPOs of cyanobacteria can functionally substitute for plastidic PPO activity in Arabidopsis and can enhance resistance to tiafenacil and saflufenacil.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/enzymology , Protoporphyrinogen Oxidase/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Protoporphyrinogen Oxidase/genetics , Pyrimidinones/pharmacology , Sulfonamides/pharmacology , Tiagabine/pharmacology
12.
Nat Commun ; 10(1): 3704, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420556

ABSTRACT

Herbicides increase crop yields by allowing weed control and harvest management. Glyphosate is the most widely-used herbicide active ingredient, with $11 billion spent annually on glyphosate-containing products applied to >350 million hectares worldwide, using about 8.6 billion kg of glyphosate. The herbicidal effectiveness of glyphosate can depend upon the time of day of spraying. Here, we show that the plant circadian clock regulates the effectiveness of glyphosate. We identify a daily and circadian rhythm in the inhibition of plant development by glyphosate, due to interaction between glyphosate activity, the circadian oscillator and potentially auxin signalling. We identify that the circadian clock controls the timing and extent of glyphosate-induced plant cell death. Furthermore, the clock controls a rhythm in the minimum effective dose of glyphosate. We propose the concept of agricultural chronotherapy, similar in principle to chronotherapy in medical practice. Our findings provide a platform to refine agrochemical use and development, conferring future economic and environmental benefits.


Subject(s)
Cell Death/drug effects , Circadian Clocks/genetics , Circadian Rhythm/genetics , Glycine/analogs & derivatives , Herbicide Resistance/physiology , Herbicides/pharmacology , Arabidopsis/drug effects , Chronotherapy , Gene Ontology , Glycine/pharmacology , Hypocotyl , Indoleacetic Acids/metabolism , Signal Transduction , Glyphosate
13.
Sci Total Environ ; 670: 486-497, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30904660

ABSTRACT

Non-target-site based resistance (NTSR), a poorly understood multigenic trait, has evolved as the greatest threat to crop production worldwide, by endowing weed plants an unpredictable pattern of resistance to herbicides. Our recent work with multiple-herbicide-resistant shortawn foxtail (Alopecurus aequalis Sobol.) biotype has preliminary indicated that cytochrome P450s-involved enhanced rate of mesosulfuron-methyl metabolism may involve in the NTSR. Here by further determining the differences in glutathione S-transferase (GST) activity and uptake and metabolic rates of mesosulfuron between resistant (R) and susceptible (S) A. aequalis plants, and associating them with endogenous differently regulated proteins (DEPs) identified from combinational proteomics analyses, we provided direct evidences on the enhanced herbicide degradation in resistant plants. Subsequently, the physiological phenotypes of photosynthesis, chlorophyll fluorescence, and antioxidation were compared between R and S plants and linked with correlative DEPs, indicating a series of key pathways including solar energy capture, photosynthetic electron transport, redox homeostasis, carbon fixation, photorespiration, and reactive oxygen species scavenging in susceptible plants were broken or severely damaged by mesosulfuron stress. In comparison, resistant plants have evolved enhanced herbicide degradation to minimize the accumulation of mesosulfuron and protect the photosynthesis and ascorbate-glutathione cycle against the adverse effects of chemical injury, giving A. aequalis plants a NTSR phenotype. Additionally, three key proteins respectively annotated as esterase, GST, and glucosyltransferase were identified and enabled as potential transcriptional markers for quick diagnosing the metabolic mesosulfuron resistance in A. aequalis species.


Subject(s)
Herbicide Resistance/physiology , Herbicides/toxicity , Poaceae/physiology , Sulfonylurea Compounds/toxicity , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Proteome , Proteomics
14.
Methods Mol Biol ; 1931: 41-48, 2019.
Article in English | MEDLINE | ID: mdl-30652281

ABSTRACT

Weed management programs to be used in grain sorghum production are best investigated in field studies with naturally occurring weed populations in their relevant growing environments. Weed control tactics to be evaluated include use of crop production practices such as row spacing and seeding rates, mechanical tools, and herbicide programs with soil- and foliar-applied products.


Subject(s)
Crop Production/methods , Sorghum/growth & development , Weed Control/methods , Agriculture/methods , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Herbicide Resistance/physiology , Herbicides/pharmacology , Seeds/drug effects , Seeds/growth & development , Sorghum/drug effects
15.
BMC Plant Biol ; 18(1): 225, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30305027

ABSTRACT

BACKGROUND: Water chickweed (Myosoton aquaticum (L.)) is a dicot broadleaf weed that is widespread in winter fields in China, and has evolved serious resistance to acetolactate synthase (ALS) inhibiting herbicides. RESULTS: We identified a M. aquaticum population exhibiting moderate (6.15-fold) resistance to tribenuron-methyl (TM). Target-site ALS gene sequencing revealed no known resistance mutations in these plants, and the in vitro ALS activity assays showed no differences in enzyme sensitivity between susceptible and resistant populations; however, resistance was reversed by pretreatment with the cytochrome P450 (CYP) monooxygenase inhibitor malathion. An RNA sequencing transcriptome analysis was performed to identify candidate genes involved in metabolic resistance, and the unigenes obtained by de novo transcriptome assembly were annotated across seven databases. In total, 34 differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time (qRT)-PCR. Ten consistently overexpressed contigs, including four for CYP, four for ATP-binding cassette (ABC) transporter, and two for peroxidase were further validated by qRT-PCR using additional plants from resistant and susceptible populations. Three CYP genes (with homology to CYP734A1, CYP76C1, and CYP86B1) and one ABC transporter gene (with homology to ABCC10) were highly expressed in all resistant plants. CONCLUSION: The mechanism of TM resistance in M. aquaticum is controlled by NTSR rather than TSR. Four genes, CYP734A1, CYP76C1, CYP86B1, and ABCC10 could play essential role in metabolic resistance to TM and justify further functional studies. To our knowledge, this is the first large-scale transcriptome analysis of genes associated with NTSR in M. aquaticum using the Illumina platform. Our data provide resource for M. aquaticum biology, and will facilitate the study of herbicide resistance mechanism at the molecular level in this species as well as in other weeds.


Subject(s)
Arylsulfonates/pharmacology , Caryophyllaceae/drug effects , Genes, Essential , Herbicide Resistance/physiology , Acetolactate Synthase/genetics , Caryophyllaceae/genetics , Caryophyllaceae/physiology , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation, Plant , Herbicides/pharmacology , Malathion/pharmacology , Molecular Sequence Annotation , Mutation , Plant Proteins/genetics , Plant Weeds/drug effects , Plant Weeds/physiology , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA
16.
Harmful Algae ; 75: 57-74, 2018 05.
Article in English | MEDLINE | ID: mdl-29778226

ABSTRACT

The toxigenic haptophyte Prymnesium parvum is a mixotrophic phytoplankter with an extensive historic record of forming nearly monospecific, high-biomass, ecosystem-disrupting blooms, and it has been responsible for major fish kills in brackish waters and aquaculture facilities in many regions of the world. Little is known about how this species responds to commonly occurring environmental contaminants, or how nutrient (nitrogen, phosphorus) pollution may interact with environmentally relevant pesticide exposures to affect this harmful algal species. Here, standard algal toxicity bioassays from pesticide hazard assessments were used along with modified erythrocyte lysis assays to evaluate how atrazine exposures, imbalanced nutrient supplies, and salinity interact to influence the growth and toxicity in P. parvum isolates from three different regions. In nutrient-replete media, P. parvum 96 h IC50s ranged from 73.0 to 88.3 µg atrazine L-1 at salinity 10 and from 118 to >200 µg atrazine µg L-1 at salinity 20, and the response depended on the strain and the test duration. Relative hemolytic activity, used as an indication of toxicity, was a function of herbicide exposure, nutrient availability, salinity, geographic origin, and interactions among these factors. Highest levels of hemolytic activity were measured from a South Carolina strain in low-nitrogen media with high atrazine concentrations. Herbicide concentration was related to relative hemolytic activity, although a consistent relationship between growth phase and toxicity was not observed. Overall, these findings suggest that increasing chemical contamination is helping to promote ecosystem-disruptive, strongly mixotrophic algal blooms.


Subject(s)
Eutrophication/drug effects , Haptophyta/drug effects , Herbicide Resistance/physiology , Herbicides/metabolism , Water Pollutants, Chemical/metabolism , Haptophyta/growth & development , Nitrogen/metabolism , Nutrients/metabolism , Phosphorus/metabolism
17.
PLoS One ; 13(4): e0195488, 2018.
Article in English | MEDLINE | ID: mdl-29672568

ABSTRACT

Amaranthus palmeri (Amaranthaceae) is a noxious weed in several agroecosystems and in some cases seriously threatens the sustainability of crop production in North America. Glyphosate-resistant Amaranthus species are widespread, prompting the use of alternatives to glyphosate such as glufosinate, in conjunction with glufosinate-resistant crop cultivars, to help control glyphosate-resistant weeds. An experiment was conducted to analyze the transcriptome of A. palmeri plants that survived exposure to 0.55 kg ha-1 glufosinate. Since there was no record of glufosinate use at the collection site, survival of plants within the population are likely due to genetic expression that pre-dates selection; in the formal parlance of weed science this is described as natural tolerance. Leaf tissues from glufosinate-treated and non-treated seedlings were harvested 24 h after treatment (HAT) for RNA-Seq analysis. Global gene expression was measured using Illumina DNA sequence reads from non-treated and treated surviving (presumably tolerant, T) and susceptible (S) plants. The same plants were used to determine the mechanisms conferring differential tolerance to glufosinate. The S plants accumulated twice as much ammonia as did the T plants, 24 HAT. The relative copy number of the glufosinate target gene GS2 did not differ between T and S plants, with 1 to 3 GS2 copies in both biotypes. A reference cDNA transcriptome consisting of 72,780 contigs was assembled, with 65,282 sequences putatively annotated. Sequences of GS2 from the transcriptome assembly did not have polymorphisms unique to the tolerant plants. Five hundred sixty-seven genes were differentially expressed between treated T and S plants. Of the upregulated genes in treated T plants, 210 were more highly induced than were the upregulated genes in the treated S plants. Glufosinate-tolerant plants had greater induction of ABC transporter, glutathione S-transferase (GST), NAC transcription factor, nitronate monooxygenase (NMO), chitin elicitor receptor kinase (CERK1), heat shock protein 83, ethylene transcription factor, heat stress transcription factor, NADH-ubiquinone oxidoreductase, ABA 8'-hydroxylase, and cytochrome P450 genes (CYP72A, CYP94A1). Seven candidate genes were selected for validation using quantitative real time-PCR. While GST was upregulated in treated tolerant plants in at least one population, CYP72A219 was consistently highly expressed in all treated tolerant biotypes. These genes are candidates for contributing tolerance to glufosinate. Taken together, these results show that differential induction of stress-protection genes in a population can enable some individuals to survive herbicide application. Elevated expression of detoxification-related genes can get fixed in a population with sustained selection pressure, leading to evolution of resistance. Alternatively, sustained selection pressure could select for mutation(s) in the GS2 gene with the same consequence.


Subject(s)
Amaranthus/drug effects , Amaranthus/metabolism , Glycine/analogs & derivatives , Herbicide Resistance/physiology , Herbicides/pharmacology , Transcriptome/drug effects , Ammonia/metabolism , Biomass , Dose-Response Relationship, Drug , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Glutamate-Ammonia Ligase/metabolism , Glycine/pharmacology , Phenotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism , Seedlings/drug effects , Seedlings/metabolism , Sequence Analysis, Protein , Sequence Analysis, RNA , Glyphosate
18.
Pest Manag Sci ; 74(8): 1880-1891, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29446872

ABSTRACT

BACKGROUND: A field-evolved herbicide-resistant weed population can represent a heterogeneous composite of subpopulations that differ in their susceptibility and responsiveness to herbicide hormesis. Variable hormesis responsiveness can result in selection for and against certain subpopulations under low herbicide doses, and this has the potential to contribute to the evolution of resistance. The relevance of this hypothesis at practical field rates was studied for two field-collected acetyl-coenzyme A carboxylase (ACCase) target-site resistant (TSR) biotypes of Alopecurus myosuroides Huds. (haplotype Leu1781) exposed to three ACCase inhibitors. Herbicide dose responses were evaluated at the population level and at different subpopulation levels after the dissection of individual plants by herbicide selection and genotyping. RESULTS: The practical field rates of fenoxaprop-P were lower than the observed hormetic doses in the resistant subpopulation, whereas the field rates of clodinafop and cycloxydim stimulated the shoot biomass in different resistant subpopulations by 21-38% above that of the control. Because variable dose levels induced hormesis in the different subpopulations, the practical field rates showed a significant potential to selectively enhance parts of a resistant field population, but did not impact or adversely affect other parts of the population. CONCLUSION: As a consequence of population heterogeneity, herbicide hormesis may impact resistance evolution in weeds at realistic use rates via the selective promotion of individual genotypes. However, the practical relevance of this phenomenon may be influenced by many factors, such as the herbicidal active ingredient used, as indicated in this study. © 2018 Society of Chemical Industry.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Herbicide Resistance/physiology , Hormesis , Plant Proteins/genetics , Plant Weeds/physiology , Poaceae/physiology , Acetyl-CoA Carboxylase/metabolism , Evolution, Molecular , Herbicide Resistance/genetics , Plant Proteins/metabolism , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Weeds/genetics , Poaceae/drug effects , Poaceae/enzymology , Poaceae/genetics
19.
Pest Manag Sci ; 74(10): 2325-2334, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29105299

ABSTRACT

BACKGROUND: Resistance to the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide tembotrione in an Amaranthus palmeri population from Nebraska (NER) has previously been confirmed to be attributable to enhanced metabolism. The objective of this study was to identify and quantify the metabolites formed in Nebraska susceptible (NES) and resistant (NER) biotypes. RESULTS: NER and NES formed the same metabolites. Tembotrione metabolism in NER differed from that in NES in that resistant plants showed faster 4-hydroxylation followed by glycosylation. The T50 value (time for 50% production of the maximum 4-hydroxylation product) was 4.9 and 11.9 h for NER and NES, respectively. This process is typically catalyzed by cytochrome P450 enzymes. Metabolism differences between NER and NES were most prominent under 28 °C conditions and herbicide application at the four-leaf stage. CONCLUSION: Further research with the aim of identifying the gene or genes responsible for conferring metabolic resistance to HPPD inhibitors should focus on cytochrome P450s. Such research is important because non-target-site-based resistance (NTSR) poses the threat of cross resistance to other chemical classes of HPPD inhibitors, other herbicide modes of action, or even unknown herbicides. © 2017 Society of Chemical Industry.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Amaranthus/metabolism , Cyclohexanones/metabolism , Herbicide Resistance/physiology , Herbicides/metabolism , Sulfones/metabolism , Amaranthus/drug effects , Amaranthus/enzymology , Cyclohexanones/pharmacology , Herbicides/pharmacology , Inactivation, Metabolic , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Weeds/metabolism , Sulfones/pharmacology
20.
Plant Sci ; 261: 69-79, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28554695

ABSTRACT

Glyphosate is considered the world's most important herbicide, but widespread and continual use has resulted in the evolution of resistance. Kochia scoparia (kochia) has evolved resistance via tandem gene amplification of glyphosate's target, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and resistant populations have been reported from the Canadian Prairies and the Northern Great Plains. Here, we evaluated the fitness costs of EPSPS amplification in kochia by comparing susceptible and resistant full siblings from segregating F2 populations generated from within six populations. Kochia was expected to be highly diverse because of strong gene flow; however, six of the seven field-collected parents with higher EPSPS copy number were homozygous. Under competitive greenhouse conditions, the EPSPS type of the line's maternal parent showed persistent effects: delayed emergence, delayed flowering, and reductions in viable seed count and weight overall. High EPSPS copy number individuals had reduced seed count and weight, reduced competitive ability, and reduced final height in mixed stands, but better germination of the F3. However, all characteristics were highly variable and fitness costs were not constant across genetic backgrounds. In the absence of selection from glyphosate, kochia with increased EPSPS copy number will be at a competitive disadvantage in some genetic backgrounds.


Subject(s)
Bassia scoparia/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Bassia scoparia/enzymology , Bassia scoparia/genetics , Bassia scoparia/physiology , DNA Copy Number Variations/genetics , DNA Copy Number Variations/physiology , Glycine/pharmacology , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Plant Breeding , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...