Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891762

ABSTRACT

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Subject(s)
Bivalvia , Spermatogenesis , Testis , Transcription Factors , Animals , Spermatogenesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Testis/metabolism , Testis/growth & development , Bivalvia/genetics , Bivalvia/metabolism , Bivalvia/growth & development , Gene Expression Regulation, Developmental , Gonads/metabolism , Gonads/growth & development , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Cloning, Molecular , Phylogeny , Amino Acid Sequence
2.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38935581

ABSTRACT

Segregation distorters (SDs) are genetic elements that distort the Mendelian segregation ratio to favor their own transmission and are able to spread even when they incur fitness costs on organisms carrying them. Depending on the biology of the host organisms and the genetic architecture of the SDs, the population dynamics of SDs can be highly variable. Inbreeding is considered an effective mechanism for inhibiting the spread of SDs in populations, and can evolve as a defense mechanism against SDs in some systems. However, we show that inbreeding in the form of selfing in fact promotes the spread of SDs acting as pollen killers in a toxin-antidote system in hermaphroditic plants by two mechanisms: (i) By reducing the effective recombination rate between killer and antidote loci in the two-locus system and (ii) by increasing the proportion of SD alleles in individual flowers, rather than in the general gene-pool. We also show that in rice (Oryza sativa L.), a typical hermaphroditic plant, all molecularly characterized SDs associated with pollen killing were involved in population hybridization and have introgressed across different species. Paradoxically, these loci, which are associated with hybrid incompatibility and can be thought of as Bateson-Dobzhansky-Muller incompatibility loci are expected to reduce gene-flow between species, in fact cross species boundaries more frequently than random loci, and may act as important drivers of introgression.


Subject(s)
Genetic Introgression , Oryza , Oryza/genetics , Inbreeding , Pollen/genetics , Hermaphroditic Organisms/genetics , Hybridization, Genetic , Self-Fertilization
3.
BMC Genomics ; 25(1): 500, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773374

ABSTRACT

BACKGROUND: The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS: In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS: In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.


Subject(s)
Metals , Animals , Male , Female , Metals/metabolism , Eels/metabolism , Eels/genetics , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Smegmamorpha/metabolism , Smegmamorpha/genetics , Hermaphroditic Organisms/metabolism , Hermaphroditic Organisms/genetics , Gene Expression Profiling , Testis/metabolism
4.
Evolution ; 78(7): 1227-1236, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554118

ABSTRACT

Gynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants and has been recently discovered in one animal: the freshwater snail, Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration. Our study uncovers a second, novel CMS-associated mitogenome (K) in Physa acuta, demonstrating an extraordinary acceleration of molecular evolution throughout the entire K mitochondrial genome, akin to the previously observed pattern in D. This suggests a pervasive occurrence of accelerated evolution in both CMS-associated lineages. Through a 17-generation introgression experiment, we further show that nuclear polymorphisms in K-mitogenome individuals contribute to the restoration of male function in natural populations. Our results underscore shared characteristics in gynodioecy between plants and animals, emphasizing the presence of multiple CMS mitotypes and cytonuclear conflicts. This reaffirms the pivotal role of mitochondria in influencing male function and in generating genomic conflicts that impact reproductive processes in animals.


Subject(s)
Genome, Mitochondrial , Polymorphism, Genetic , Snails , Animals , Male , Snails/genetics , Snails/physiology , Cell Nucleus/genetics , Fertility/genetics , Hermaphroditic Organisms/genetics , Evolution, Molecular , Female , Cytoplasm/genetics , Infertility, Male/genetics
5.
Nature ; 628(8006): 122-129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448590

ABSTRACT

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Subject(s)
Caenorhabditis , Genomic Imprinting , Piwi-Interacting RNA , Repetitive Sequences, Nucleic Acid , Animals , Female , Male , Alleles , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis/genetics , Caenorhabditis/metabolism , Crosses, Genetic , Fathers , Genome/genetics , Genomic Imprinting/genetics , Hermaphroditic Organisms/genetics , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Mothers , Oocytes/metabolism , Piwi-Interacting RNA/genetics , Protein Biosynthesis , Repetitive Sequences, Nucleic Acid/genetics , RNA, Messenger/genetics , Toxins, Biological/genetics , Transcription, Genetic
6.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830486

ABSTRACT

Spermatogenesis is a process of self-renewal and differentiation in spermatogonial stem cells. During this process, germ cells and somatic cells interact intricately to ensure long-term fertility and accurate genome propagation. Spermatogenesis has been intensely investigated in mammals but remains poorly understood with regard to teleosts. Here, we performed single-cell RNA sequencing of ~9500 testicular cells from the male, orange-spotted grouper. In the adult testis, we divided the cells into nine clusters and defined ten cell types, as compared with human testis data, including cell populations with characteristics of male germ cells and somatic cells, each of which expressed specific marker genes. We also identified and profiled the expression patterns of four marker genes (calr, eef1a, s100a1, vasa) in both the ovary and adult testis. Our data provide a blueprint of male germ cells and supporting somatic cells. Moreover, the cell markers are candidates that could be used for further cell identification.


Subject(s)
Fishes/genetics , Hermaphroditic Organisms/genetics , Spermatogenesis/genetics , Testis/growth & development , Animals , Fish Proteins/genetics , Fishes/growth & development , Gene Expression Regulation, Developmental/genetics , Germ Cells/metabolism , Hermaphroditic Organisms/growth & development , Male , RNA-Seq , Sex Differentiation/genetics , Single-Cell Analysis , Testis/pathology
7.
Sci Rep ; 11(1): 22881, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819550

ABSTRACT

The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17ß-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.


Subject(s)
Fishes/physiology , Hermaphroditic Organisms/physiology , Sex Determination Processes , Animals , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/metabolism , Aromatase Inhibitors/pharmacology , Estradiol/blood , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/blood , Fishes/genetics , Gene Expression Regulation , Gonads/physiology , Hermaphroditic Organisms/drug effects , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Male , Models, Animal , Phenotype , Sex Characteristics , Sex Determination Processes/drug effects , Social Behavior , Testosterone/analogs & derivatives , Testosterone/blood
8.
BMC Plant Biol ; 21(1): 468, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34645403

ABSTRACT

BACKGROUND: The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS: Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION: Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.


Subject(s)
Carbohydrate Metabolism/genetics , Flowers/growth & development , Flowers/genetics , Oleaceae/growth & development , Oleaceae/genetics , Oleaceae/metabolism , Reproduction/genetics , Reproduction/physiology , Biological Evolution , China , Gene Expression Regulation, Plant , Genetic Variation , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , Hermaphroditic Organisms/metabolism , Phenotype , Proteomics
9.
Mol Genet Genomics ; 296(6): 1323-1335, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34609588

ABSTRACT

Sex form is one of the most important characteristics in papaya cultivation in which hermaphrodite is the preferable form. Self-pollination of H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. The recessive lethal allele controlling the all-hermaphrodite phenomenon was proposed to be the recessive Germination suppressor (gs) locus. This study employed next-generation sequencing technology and genome comparison to identify the candidate Gs gene. One specific gene, monodehydroascorbate reductase 4 (MDAR4) harboring a unique polymorphic 3 bp deletion in H*-TSS No.7 was identified. The function of MDAR4 is known to be involved in the hydrogen peroxide (H2O2) scavenging pathway and is associated with seed germination. Furthermore, MDAR4 showed higher expression in the imbibed seeds than that in the dry seeds indicating its potential role in the seed germination. Perhaps this is the very first report providing the evidences that MDAR4 is the candidate of Gs locus in H*-TSS No.7. In addition, Gs allele-specific markers were developed which would be facilitated for breeding all-hermaphrodite lines.


Subject(s)
Carica/genetics , Chromosomes, Plant/genetics , Hermaphroditic Organisms/genetics , NADH, NADPH Oxidoreductases/genetics , Genome, Plant/genetics , Germination/genetics , Hydrogen Peroxide/metabolism , Pollination/genetics , Pollination/physiology , Seeds/growth & development , Sequence Deletion/genetics
10.
Commun Biol ; 4(1): 1018, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465863

ABSTRACT

Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.


Subject(s)
Caenorhabditis elegans/physiology , Hermaphroditic Organisms/physiology , Locomotion , Receptors, Neuropeptide/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins , Carrier Proteins , Hermaphroditic Organisms/genetics , Locomotion/drug effects , Male , Receptors, Neuropeptide/metabolism
11.
Dev Biol ; 478: 122-132, 2021 10.
Article in English | MEDLINE | ID: mdl-34224682

ABSTRACT

Sexual systems are surprisingly diverse, considering the ubiquity of sexual reproduction. Sequential hermaphroditism, the ability of an individual to change sex, has emerged multiple times independently across the animal kingdom. In molluscs, repeated shifts between ancestrally separate sexes and hermaphroditism are generally found at the level of family and above, suggesting recruitment of deeply conserved mechanisms. Despite this, molecular mechanisms of sexual development are poorly known. In molluscs with separate sexes, endocrine disrupting toxins bind the retinoid X receptor (RXR), activating ectopic male development in females, suggesting the retinoid pathway as a candidate controlling sexual transitions in sequential hermaphrodites. We therefore tested the role of retinoic acid signaling in sequentially hermaphroditic Crepidula snails, which develop first into males, then change sex, maturing into females. We show that retinoid agonists induce precocious penis growth in juveniles and superimposition of male development in females. Combining RXR antagonists with retinoid agonists significantly reduces penis length in induced juveniles, while similar treatments using retinoic acid receptor (RAR) antagonists increase penis length. Transcripts of both receptors are expressed in the induced penis. Our findings therefore show that retinoid signaling can initiate molluscan male genital development, and regulate penis length. Further, we show that retinoids induce ectopic male development in multiple Crepidula species. Species-specific influence of conspecific induction of sexual transitions correlates with responsiveness to retinoids. We propose that retinoid signaling plays a conserved role in molluscan male development, and that shifts in the timing of retinoid signaling may have been important for the origins of sequential hermaphroditism within molluscs.


Subject(s)
Hermaphroditic Organisms/growth & development , Retinoids/metabolism , Snails/growth & development , Snails/metabolism , Animals , Cytochrome P450 Family 26/genetics , Female , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Male , Penis/growth & development , Penis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/agonists , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Signal Transduction , Snails/anatomy & histology , Snails/genetics , Species Specificity , Tretinoin/metabolism , Trialkyltin Compounds/pharmacology
12.
Genetics ; 217(1): 1-14, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33683352

ABSTRACT

Posttranscriptional regulation of gene expression, typically effected by RNA-binding proteins, microRNAs (miRNAs), and translation initiation factors, is essential for normal germ cell function. Numerous miRNAs have been detected in the germline; however, the functions of specific miRNAs remain largely unknown. Functions of miRNAs have been difficult to determine as miRNAs often modestly repress target mRNAs and are suggested to sculpt or fine tune gene expression to allow for the robust expression of cell fates. In Caenorhabditis elegans hermaphrodites, cell fate decisions are made for germline sex determination during larval development when sperm are generated in a short window before the switch to oocyte production. Here, analysis of newly generated mir-44 family mutants has identified a family of miRNAs that modulate the germline sex determination pathway in C. elegans. Mutants with the loss of mir-44 and mir-45 produce fewer sperm, showing both a delay in the specification and formation of sperm as well as an early termination of sperm specification accompanied by a premature switch to oocyte production. mir-44 and mir-45 are necessary for the normal period of fog-1 expression in larval development. Through genetic analysis, we find that mir-44 and mir-45 may act upstream of fbf-1 and fem-3 to promote sperm specification. Our research indicates that the mir-44 family promotes sperm cell fate specification during larval development and identifies an additional posttranscriptional regulator of the germline sex determination pathway.


Subject(s)
Germ Cells/metabolism , MicroRNAs/genetics , Spermatogenesis , Animals , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Germ Cells/cytology , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , MicroRNAs/metabolism , Sex Determination Processes
13.
Evolution ; 75(5): 1011-1029, 2021 05.
Article in English | MEDLINE | ID: mdl-33675041

ABSTRACT

Self-fertilization commonly occurs in hermaphroditic species, either occasionally or as the main reproductive mode. It strongly affects the genetic functioning of a population by increasing homozygosity and genetic drift and reducing the effectiveness of recombination. Balancing selection is a form of selection that maintains polymorphism, which has been extensively studied in outcrossing species. Yet, despite recent developments, the analysis of balancing selection in partially selfing species is limited to specific cases and a general treatment is still lacking. In particular, it is unclear whether selfing globally reduced the efficacy of balancing selection as in the well-known case of overdominance. I provide a unifying framework, quantify how selfing affects the maintenance of polymorphism and the efficacy of the different form of balancing selection, and show that they can be classified into two main categories: overdominance-like selection (including true overdominance, selection variable in space and time, and antagonistic selection), which is strongly affected by selfing, and negative frequency dependent selection, which is barely affected by selfing, even at multiple loci. I also provide simple analytical results for all cases under the assumption of weak selection. This framework provides theoretical background to analyze the genomic signature of balancing selection in partially selfing species. It also sheds new light on the evolution of selfing species, including the evolution of selfing syndrome, the interaction with pathogens, and the evolutionary fate of selfing lineages.


Subject(s)
Hermaphroditic Organisms/genetics , Selection, Genetic , Self-Fertilization/genetics , Animals , Models, Genetic , Plants/genetics , Polymorphism, Genetic
14.
Mol Genet Genomics ; 296(1): 1-20, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32888055

ABSTRACT

Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Genome, Helminth , Hermaphroditic Organisms/genetics , Mutagenesis , Animals , Chromosome Mapping/methods , Crosses, Genetic , Female , Gene Editing/methods , High-Throughput Screening Assays , Male , Mutation , Polymorphism, Single Nucleotide , RNA Interference
15.
Dev Biol ; 470: 10-20, 2021 02.
Article in English | MEDLINE | ID: mdl-33160939

ABSTRACT

VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Helminth Proteins/metabolism , Membrane Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Endoplasmic Reticulum/metabolism , Genes, Helminth , Gonads/chemistry , Gonads/growth & development , Gonads/metabolism , Helminth Proteins/chemistry , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Hermaphroditic Organisms/physiology , Infertility , Intestines/cytology , Intestines/physiology , Leucine/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Phenotype , Point Mutation , Protein Domains , Protein Processing, Post-Translational
16.
Biomolecules ; 10(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33321846

ABSTRACT

In Caenorhabditis elegans, gap junctions couple cells of the somatic gonad with the germline to support germ cell proliferation and gametogenesis. A strong loss-of-function mutation (T239I) affects the second extracellular loop (EL2) of the somatic INX-8 hemichannel subunit. These mutant hemichannels form non-functional gap junctions with germline-expressed innexins. We conducted a genetic screen for suppressor mutations that restore germ cell proliferation in the T239I mutant background and isolated seven intragenic mutations, located in diverse domains of INX-8 but not the EL domains. These second-site mutations compensate for the original channel defect to varying degrees, from nearly complete wild-type rescue, to partial rescue of germline proliferation. One suppressor mutation (E350K) supports the innexin cryo-EM structural model that the channel pore opening is surrounded by a cytoplasmic dome. Two suppressor mutations (S9L and I36N) may form leaky channels that support germline proliferation but cause the demise of somatic sheath cells. Phenotypic analyses of three of the suppressors reveal an equivalency in the rescue of germline proliferation and comparable delays in gametogenesis but a graded rescue of fertility. The mutations described here may be useful for elucidating the biochemical pathways that produce the active biomolecules transiting through soma-germline gap junctions.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Connexins/genetics , Gametogenesis/genetics , Hermaphroditic Organisms/genetics , Mutation , Amino Acid Sequence , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Cell Proliferation , Connexins/chemistry , Connexins/metabolism , Fertility/genetics , Gap Junctions/metabolism , Gap Junctions/ultrastructure , Gonads/cytology , Gonads/metabolism , Hermaphroditic Organisms/cytology , Hermaphroditic Organisms/metabolism , Male , Oocytes/cytology , Oocytes/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sequence Alignment , Spermatozoa/cytology , Spermatozoa/metabolism , Structural Homology, Protein
19.
Genome Biol Evol ; 12(7): 1194-1206, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32539143

ABSTRACT

Vernal pools are unique in their isolation and the strong selection acting on their resident species. Vernal pool clam shrimp (Eulimnadia texana) are a promising model due to ease of culturing, short generation time, small genomes, and obligate desiccated diapaused eggs. Clam shrimp are also androdioecious (sexes include males and hermaphrodites), and here we use population-scaled recombination rates to support the hypothesis that the heterogametic sex is recombination free in these shrimp. We collected short-read sequence data from pooled samples from different vernal pools to gain insights into local adaptation. We identify genomic regions in which some populations have allele frequencies that differ significantly from the metapopulation. BayPass (Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555-1579.) detected 19 such genomic regions showing an excess of population subdivision. These regions on average are 550 bp in size and had 2.5 genes within 5 kb of them. Genes located near these regions are involved in Malpighian tubule function and osmoregulation, an essential function in vernal pools. It is likely that salinity profiles vary between pools and over time, and variants at these genes are adapted to local salinity conditions.


Subject(s)
Adaptation, Biological/genetics , Crustacea/genetics , Genome , Animals , Biological Evolution , Ecosystem , Gene Flow , Hermaphroditic Organisms/genetics , Male , New Mexico , Recombination, Genetic , Selection, Genetic , Sex Determination Processes
20.
Sci Rep ; 10(1): 2514, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054881

ABSTRACT

Many hermaphroditic organisms possess a self-incompatibility system to avoid inbreeding. Although the mechanisms of self-incompatibility in flowering plants are well known, little is known about the mechanisms of self-sterility in hermaphroditic marine invertebrates. Ascidians are hermaphroditic sessile marine invertebrates that release sperm and eggs into the surrounding seawater. Several species, including Ciona intestinalis type A (Ciona robusta), exhibit strict self-sterility. In a previous study, we found that the candidate genes responsible for self-sterility in Ciona reside in chromosome 2q (locus A) and chromosome 7q (locus B). Two pairs of multi-allelic genes, named s(sperm)-Themis-A and v(vitelline-coat)-Themis-A in locus A and s-Themis-B and v-Themis-B in locus B, are responsible for self-sterility. In this study, we identified a third multi-allelic gene pair, s-Themis-B2 and v-Themis-B2, within locus B that is also involved in this system. Genetic analysis revealed that the haplotypes of s/v-Themis-A, s/v-Themis-B and s/v-Themis-B2 play essential roles in self-sterility. When three haplotypes were matched between s-Themis and v-Themis, fertilization never occurred even in nonself crossing. Interestingly, gene targeting of either s/v-Themis-B/B2 or s/v-Themis-A by genome editing enabled self-fertilization. These results indicate that s/v-Themis-A, -B and -B2 are S-determinant genes responsible for self-sterility in the ascidian C. intestinalis type A.


Subject(s)
Ciona intestinalis/genetics , Ciona intestinalis/physiology , Alleles , Animals , Female , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/physiology , Infertility , Male , Self-Fertilization
SELECTION OF CITATIONS
SEARCH DETAIL
...