Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sensors (Basel) ; 24(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123895

ABSTRACT

Hoof care providers are pivotal for implementing biomechanical optimizations of the musculoskeletal system in the horse. Regular visits allow for the collection of longitudinal, quantitative information ("normal ranges"). Changes in movement symmetry, e.g., after shoeing, are indicative of alterations in weight-bearing and push-off force production. Ten Warmblood show jumping horses (7-13 years; 7 geldings, 3 mares) underwent forelimb re-shoeing with rolled rocker shoes, one limb at a time ("limb-by-limb"). Movement symmetry was measured with inertial sensors attached to the head, withers, and pelvis during straight-line trot and lunging. Normalized differences pre/post re-shoeing were compared to published test-retest repeatability values. Mixed-model analysis with random factors horse and limb within horse and fixed factors surface and exercise direction evaluated movement symmetry changes (p < 0.05, Bonferroni correction). Withers movement indicated increased forelimb push-off with the re-shod limb on the inside of the circle and reduced weight-bearing with the re-shod limb and the ipsilateral hind limb on hard ground compared to soft ground. Movement symmetry measurements indicate that a rolled rocker shoe allows for increased push-off on soft ground in trot in a circle. Similar studies should study different types of shoes for improved practically relevant knowledge about shoeing mechanics, working towards evidence-based preventative shoeing.


Subject(s)
Forelimb , Shoes , Animals , Horses/physiology , Forelimb/physiology , Biomechanical Phenomena/physiology , Movement/physiology , Weight-Bearing/physiology , Gait/physiology , Female , Male , Hindlimb/physiology
2.
Sci Rep ; 14(1): 15536, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969710

ABSTRACT

Mallards inhabit soft grounds such as mudflats, marshes, and beaches, demonstrating remarkable proficiency in traversing these grounds. This adeptness is closely linked to the adjustments in the operation of their hindlimbs. This study employs high-speed videography to observe postural adjustments during locomotion across mudflats. Analysis of spatiotemporal parameters of the hindlimbs reveals transient and continuous changes in joints (tarsometatarso-phalangeal joint (TMTPJ), intertarsal joint (ITJ), knee, and hip) during movement on different ground hardness and slope (horizontal and uphill). The results indicate that as the stride length of the mallard increases, its speed also increases. Additionally, the stance phase duration decreases, leading to a decrease in the duty factor. Reduced ground hardness and increased slope lead to delayed adjustment of the TMTPJ, ITJ, and knee. Mallards adjust their stride length by augmenting ITJ flexion on steeper slopes, while reduced hardness prompts a decrease in TMTPJ flexion at touch-down. Additionally, the hip undergoes two brief extensions during the stance phase, indicating its crucial role in posture adjustment and propulsion on uphill grounds. Overall, the hindlimb joints of the mallard function as a whole musculoskeletal system, with each joint employing a distinct strategy for adjusting to adapt to various ground conditions.


Subject(s)
Hindlimb , Locomotion , Hindlimb/physiology , Animals , Locomotion/physiology , Biomechanical Phenomena , Joints/physiology , Lizards/physiology , Gait/physiology
3.
Vet J ; 306: 106202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39038777

ABSTRACT

Equine physiotherapy commonly includes basic exercises such as walking backward (BW) and voluntary lifting of single limbs (SLL), but trunk movements during these have not been studied. In order to compare the trunk kinematics during BW and SLL with forward walking (FW), nine horses were measured in FW, BW and during SLL triggered by tactile cue. Kinematics were obtained from skin markers captured by ten high-speed video cameras. Trunk angles were calculated in sagittal and horizontal planes from withers, dorsal to spinous processes of the 16th thoracic vertebra (T16), 2nd and 4th sacral vertebrae (S2, S4), WT16S2 and T16S2S4 respectively. From the hooves, maximum hoof height during swing phase and horizontal distance between hoof and median body plane during swing and stance phases were determined. Dorsoventral range of motion (ROM) and maximum flexion of WT16S2 was significantly larger in BW than in FW, while laterolateral ROM was significantly smaller during hindlimb swing phase in BW and SLL than in FW. In contrast, dorsoventral ROM of T16S2S4 was significantly smaller during stance and swing phases of hindlimbs in BW compared to FW, and throughout the movement. During forelimb swing phase, T16S2S4 ROM was significantly larger in BW than SLL. Hindhoof height in SLL was significantly higher than in FW. Distance between median body plane and hooves was significantly larger in BW than in FW, and significantly larger in BW than in SLL for hindlimb swing phase. In BW, increased lumbosacral stabilisation and the larger area of support created by fore- and hindlimbs may represent a strategy to enhance body stabilisation, as BW entails some insecurity.


Subject(s)
Forelimb , Hindlimb , Walking , Animals , Horses/physiology , Biomechanical Phenomena , Hindlimb/physiology , Forelimb/physiology , Walking/physiology , Male , Female , Gait/physiology , Torso/physiology , Range of Motion, Articular
4.
PeerJ ; 12: e17824, 2024.
Article in English | MEDLINE | ID: mdl-39071138

ABSTRACT

Bats are the only mammals capable of powered flight and have correspondingly specialized body plans, particularly in their limb morphology. The origin of bat flight is still not fully understood due to an uninformative fossil record but, from the perspective of a functional transition, it is widely hypothesized that bats evolved from gliding ancestors. Here, we test predictions of the gliding-to-flying hypothesis of the origin of bat flight by using phylogenetic comparative methods to model the evolution of forelimb and hindlimb traits on a dataset spanning four extinct bats and 231 extant mammals with diverse locomotor modes. Our results reveal that gliders exhibit adaptive trait optima (1) toward relatively elongate forelimbs that are intermediate between those of bats and non-gliding arborealists, and (2) toward relatively narrower but not longer hindlimbs that are intermediate between those of non-gliders and bats. We propose an adaptive landscape based on limb length and width optimal trends derived from our modeling analyses. Our results support a hypothetical evolutionary pathway wherein glider-like postcranial morphology precedes a bat-like morphology adapted to powered-flight, setting a foundation for future developmental, biomechanical, and evolutionary research to test this idea.


Subject(s)
Biological Evolution , Chiroptera , Flight, Animal , Forelimb , Phylogeny , Chiroptera/anatomy & histology , Chiroptera/physiology , Animals , Flight, Animal/physiology , Forelimb/anatomy & histology , Forelimb/physiology , Hindlimb/anatomy & histology , Hindlimb/physiology , Fossils , Biomechanical Phenomena
5.
Neural Netw ; 178: 106422, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901095

ABSTRACT

Locomotion and scratching are basic motor functions which are critically important for animal survival. Although the spinal circuits governing forward locomotion have been extensively investigated, the organization of spinal circuits and neural mechanisms regulating backward locomotion and scratching remain unclear. Here, we extend a model by Danner et al. to propose a spinal circuit model with asymmetrical cervical-lumbar layout to investigate these issues. In the model, the left-right alternation within the cervical and lumbar circuits is mediated by V 0D and V 0V commissural interneurons (CINs), respectively. With different control strategies, the model closely reproduces multiple experimental data of quadrupeds in different motor behaviors. Specifically, under the supraspinal drive, walk and trot are expressed in control condition, half-bound is expressed after deletion of V 0V CINs, and bound is expressed after deletion of V0 (V 0D and V 0V) CINs; in addition, unilateral hindlimb scratching occurs in control condition and synchronous bilateral hindlimb scratching appears after deletion of V 0V CINs. Under the combined drive of afferent feedback and perineal stimulation, different coordination patterns between hindlimbs during BBS (backward-biped-spinal) locomotion are generated. The results suggest that (1) the cervical and lumbar circuits in the spinal network are asymmetrically recruited during particular rhythmic limb movements. (2) Multiple motor behaviors share a single spinal network under the reconfiguration of the spinal network by supraspinal inputs or somatosensory feedback. Our model provides new insights into the organization of motor circuits and neural control of rhythmic limb movements.


Subject(s)
Interneurons , Locomotion , Spinal Cord , Locomotion/physiology , Animals , Interneurons/physiology , Spinal Cord/physiology , Models, Neurological , Hindlimb/physiology
6.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38699818

ABSTRACT

Little is known regarding the precise muscle, bone and joint actions resulting from individual and simultaneous muscle activation(s) of the lower limb. An in situ experimental approach is described herein to control the muscles of the rabbit lower hindlimb, including the medial and lateral gastrocnemius, soleus, plantaris and tibialis anterior. The muscles were stimulated using nerve-cuff electrodes placed around the innervating nerves of each muscle. Animals were fixed in a stereotactic frame with the ankle angle set at 90 deg. To demonstrate the efficacy of the experimental technique, isometric plantarflexion torque was measured at the 90 deg ankle joint angle at a stimulation frequency of 100, 60 and 30 Hz. Individual muscle torque and the torque produced during simultaneous activation of all plantarflexor muscles are presented for four animals. These results demonstrate that the experimental approach was reliable, with insignificant variation in torque between repeated contractions. The experimental approach described herein provides the potential for measuring a diverse array of muscle properties, which is important to improve our understanding of musculoskeletal biomechanics.


Subject(s)
Hindlimb , Muscle, Skeletal , Torque , Animals , Rabbits , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Hindlimb/physiology , Biomechanical Phenomena , Electric Stimulation , Male
7.
An Acad Bras Cienc ; 96(2): e20230240, 2024.
Article in English | MEDLINE | ID: mdl-38747786

ABSTRACT

There are few studies related to the biological and ecological aspects of the glass snake, a limbless lizard and with a wide geographic distribution. The aim of this study was to analyze the locomotion mode of specimens of Ophiodes cf. fragilis in different substrates and to investigate the morphological adaptations associated with this type of behavior. We observed that the analyzed specimens presented slide-push locomotion modes and lateral undulation in different substrates, using their hind limbs to aid locomotion in three of the four substrates analyzed. The bones of the hind limbs (proximal - femur - and distal - tibia and fibula) were present and highly reduced and the femur is connected to a thin pelvic girdle. Our data support that hind limbs observed in species of this genus are reduced rather than vestigial. The costocutaneous musculature was macroscopically absent. This is the first study of locomotor behavior and morphology associated with locomotion in Ophiodes, providing important information for studies on morphological evolution in the genus.


Subject(s)
Adaptation, Physiological , Lizards , Locomotion , Animals , Lizards/anatomy & histology , Lizards/physiology , Lizards/classification , Locomotion/physiology , Adaptation, Physiological/physiology , Hindlimb/anatomy & histology , Hindlimb/physiology
8.
J Neurophysiol ; 131(6): 997-1013, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691528

ABSTRACT

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.


Subject(s)
Forelimb , Hindlimb , Locomotion , Muscle, Skeletal , Reflex , Spinal Cord Injuries , Animals , Cats , Hindlimb/physiology , Forelimb/physiology , Reflex/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Spinal Cord Injuries/physiopathology , Movement/physiology , Female , Male , Skin/innervation
9.
J Exp Biol ; 227(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38634230

ABSTRACT

Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14 cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.


Subject(s)
Hindlimb , Locomotion , Animals , Hindlimb/physiology , Hindlimb/anatomy & histology , Biomechanical Phenomena , Mice/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Male , Female , Tibia/physiology , Tibia/anatomy & histology , Femur/physiology , Femur/anatomy & histology
10.
J Physiol ; 602(9): 1987-2017, 2024 May.
Article in English | MEDLINE | ID: mdl-38593215

ABSTRACT

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.


Subject(s)
Hindlimb , Locomotion , Muscle, Skeletal , Reflex , Spinal Cord Injuries , Animals , Cats , Hindlimb/innervation , Hindlimb/physiology , Hindlimb/physiopathology , Male , Female , Spinal Cord Injuries/physiopathology , Reflex/physiology , Locomotion/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Skin/innervation , Thoracic Vertebrae , Forelimb/physiopathology , Forelimb/physiology , Electric Stimulation
11.
J Anat ; 245(2): 240-257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38558391

ABSTRACT

Heavy animals incur large forces on their limb bones, due to the transmission of body weight and ground reaction forces, and the contractions of the various muscles of the limbs. This is particularly true for rhinoceroses, the heaviest extant animals capable of galloping. Several studies have examined their musculoskeletal system and the forces their bones incur, but no detailed quantification has ever been attempted. Such quantification could help understand better the link between form and function in giant land animals. Here we constructed three-dimensional musculoskeletal models of the forelimb and hindlimb of Ceratotherium simum, the heaviest extant rhino species, and used static optimisation (inverse) simulations to estimate the forces applied on the bones when standing at rest, including magnitudes and directions. Overall, unsurprisingly, the most active muscles were antigravity muscles, which generate moments opposing body weight (thereby incurring the ground reaction force), and thus keep the joints extended, avoiding joint collapse via flexion. Some muscles have an antigravity action around several joints, and thus were found to be highly active, likely specialised in body weight support (ulnaris lateralis; digital flexors). The humerus was subjected to the greatest amount of forces in terms of total magnitude; forces on the humerus furthermore came from a great variety of directions. The radius was mainly subject to high-magnitude compressive joint reaction forces, but to little muscular tension, whereas the opposite pattern was observed for the ulna. The femur had a pattern similar to that of the humerus, and the tibia's pattern was intermediate, being subject to great compression in its caudal side but to great tension in its cranial side (i.e. bending). The fibula was subject to by far the lowest force magnitude. Overall, the forces estimated were consistent with the documented morphofunctional adaptations of C. simum's long bones, which have larger insertion areas for several muscles and a greater robusticity overall than those of lighter rhinos, likely reflecting the intense forces we estimated here. Our estimates of muscle and bone (joint) loading regimes for this giant tetrapod improve the understanding of the links between form and function in supportive tissues and could be extended to other aspects of bone morphology, such as microanatomy.


Subject(s)
Muscle, Skeletal , Perissodactyla , Animals , Perissodactyla/physiology , Perissodactyla/anatomy & histology , Biomechanical Phenomena/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Forelimb/physiology , Forelimb/anatomy & histology , Hindlimb/physiology , Hindlimb/anatomy & histology , Computer Simulation
12.
STAR Protoc ; 5(2): 102972, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38502685

ABSTRACT

Studies on sensory information processing typically focus on whisker-related tactile information, overlooking the question of how sensory inputs from other body areas are processed at cortical levels. Here, we present a protocol for stimulating specific rodent limb receptive fields while recording in vivo somatosensory-evoked activity. We describe steps for localizing cortical-hindlimb coordinates using acute peripheral stimulation, electrode placement, and the application of electrical stimulation. This protocol overcomes the challenge of inducing a reproducible and consistent stimulation of specific limbs. For complete details on the use and execution of this protocol, please refer to Miguel-Quesada et al.1.


Subject(s)
Electric Stimulation , Evoked Potentials, Somatosensory , Somatosensory Cortex , Animals , Evoked Potentials, Somatosensory/physiology , Electric Stimulation/methods , Somatosensory Cortex/physiology , Rats , Mice , Extremities/physiology , Rodentia , Hindlimb/physiology , Vibrissae/physiology
13.
Vet Res Commun ; 48(3): 1935-1939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470524

ABSTRACT

In the present study we aimed to investigate superficial skin temperature of racehorses' distal limbs after training in a racetrack. Male and female Thoroughbred racehorses were investigated in summer, after light training, and in the winter, after light and intense training. Horses were exercised (Exercise group, EG) under trainers' protocol while others were maintained inside their stalls (Control group, CG). Thermographic images were obtained from the front (fetlock, cannon, and carpus) and hindlimbs (fetlock, cannon, and tarsus), before exercise and 45, 60, 120 and 180 min after exercising. Images were analyzed using the Flir Tools® program. Temperatures of different moments of each group were compared using Anova for repeated measures and each moment of EG versus CG using Student t test. Horses of the CG maintained steady temperature in the winter, but in summer temperature increased at M45 until M180 (P < 0,01). EG increased temperatures after exercises that remained higher than M0 even at 180 min post-exercise (P < 0,0001), for most of the regions in winter and summer. EG temperatures were higher than CG at most of the time points after exercise. There was positive correlation between all regions' temperature and the atmospheric temperature for the CG during the summer (P = 0,003, r2 = 0,9622), observed for the front fetlock and carpal regions for the EG (P = 0.035, r2 = 0,8166). This pilot study demonstrates that, after race exercising under natural conditions skin temperature might take more than 180 min to return to basal values.


Subject(s)
Physical Conditioning, Animal , Seasons , Skin Temperature , Animals , Horses/physiology , Physical Conditioning, Animal/physiology , Female , Male , Hindlimb/physiology , Forelimb/physiology , Thermography/veterinary
14.
Horm Behav ; 161: 105502, 2024 May.
Article in English | MEDLINE | ID: mdl-38382227

ABSTRACT

How diverse animal communication signals have arisen is a question that has fascinated many. Xenopus frogs have been a model system used for three decades to reveal insights into the neuroendocrine mechanisms and evolution of vocal diversity. Due to the ease of studying central nervous system control of the laryngeal muscles in vitro, Xenopus has helped us understand how variation in vocal communication signals between sexes and between species is produced at the molecular, cellular, and systems levels. Yet, it is becoming easier to make similar advances in non-model organisms. In this paper, we summarize our research on a group of frog species that have evolved a novel hind limb signal known as 'foot flagging.' We have previously shown that foot flagging is androgen dependent and that the evolution of foot flagging in multiple unrelated species is accompanied by the evolution of higher androgen hormone sensitivity in the leg muscles. Here, we present new preliminary data that compare patterns of androgen receptor expression and neuronal cell density in the lumbar spinal cord - the neuromotor system that controls the hind limb - between foot-flagging and non-foot-flagging frog species. We then relate our work to prior findings in Xenopus, highlighting which patterns of hormone sensitivity and neuroanatomical structure are shared between the neuromotor systems underlying Xenopus vocalizations and foot-flagging frogs' limb movement and which appear to be species-specific. Overall, we aim to illustrate the power of drawing inspiration from experiments in model organisms, in which the mechanistic details have been worked out, and then applying these ideas to a non-model species to reveal new details, further complexities, and fresh hypotheses.


Subject(s)
Androgens , Animal Communication , Biological Evolution , Animals , Androgens/pharmacology , Vocalization, Animal/physiology , Vocalization, Animal/drug effects , Male , Anura/physiology , Female , Xenopus/physiology , Hindlimb/physiology , Receptors, Androgen/metabolism , Receptors, Androgen/physiology , Spinal Cord/drug effects , Spinal Cord/physiology , Spinal Cord/metabolism
15.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38164555

ABSTRACT

Currently there are numerous methods to evaluate peripheral nerve stimulation interfaces in rats, with stimulation-evoked ankle torque being one of the most prominent. Commercial rat ankle torque measurement systems and custom one-off solutions have been published in the literature. However, commercial systems are proprietary and costly and do not allow for customization. One-off lab-built systems have required specialized machining expertise, and building plans have previously not been made easily accessible. Here, detailed building plans are provided for a low-cost, open-source, and basic ankle torque measurement system from which additional customization can be made. A hindlimb stabilization apparatus was developed to secure and stabilize a rat's hindlimb, while allowing for simultaneous ankle-isometric torque and lower limb muscle electromyography (EMG). The design was composed mainly of adjustable 3D-printed components to accommodate anatomical differences between rat hindlimbs. Additionally, construction and calibration procedures of the rat hindlimb stabilization apparatus were demonstrated in this study. In vivo torque measurements were reliably acquired and corresponded to increasing stimulation amplitudes. Furthermore, implanted leads used for intramuscular EMG recordings complemented torque measurements and were used as an additional functional measurement in evaluating the performance of a peripheral nerve stimulation interface. In conclusion, an open-source and noninvasive platform, made primarily with 3D-printed components, was constructed for reliable data acquisition of evoked motor activity in rat models. The purpose of this apparatus is to provide researchers a versatile system with adjustable components that can be tailored to meet user-defined experimental requirements when evaluating motor function of the rat hindlimbs.


Subject(s)
Ankle , Muscle, Skeletal , Rats , Animals , Muscle, Skeletal/physiology , Electric Stimulation/methods , Lower Extremity , Hindlimb/innervation , Hindlimb/physiology , Electromyography/methods , Printing, Three-Dimensional
16.
J Neurophysiol ; 131(2): 321-337, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38198656

ABSTRACT

There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.


Subject(s)
Levodopa , Muscle, Skeletal , Infant, Newborn , Animals , Rats , Mice , Humans , Animals, Newborn , Levodopa/pharmacology , Electromyography , Muscle, Skeletal/physiology , Movement , Locomotion/physiology , Hindlimb/physiology
17.
Poult Sci ; 103(2): 103317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160613

ABSTRACT

Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Chickens , Forelimb/physiology , Hindlimb/physiology , Transcription Factors , Humerus
18.
Elife ; 122023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099572

ABSTRACT

Spinal locomotor circuitry is comprised of rhythm generating centers, one for each limb, that are interconnected by local and long-distance propriospinal neurons thought to carry temporal information necessary for interlimb coordination and gait control. We showed previously that conditional silencing of the long ascending propriospinal neurons (LAPNs) that project from the lumbar to the cervical rhythmogenic centers (L1/L2 to C6), disrupts right-left alternation of both the forelimbs and hindlimbs without significantly disrupting other fundamental aspects of interlimb and speed-dependent coordination (Pocratsky et al., 2020). Subsequently, we showed that silencing the LAPNs after a moderate thoracic contusive spinal cord injury (SCI) resulted in better recovered locomotor function (Shepard et al., 2021). In this research advance, we focus on the descending equivalent to the LAPNs, the long descending propriospinal neurons (LDPNs) that have cell bodies at C6 and terminals at L2. We found that conditional silencing of the LDPNs in the intact adult rat resulted in a disrupted alternation of each limb pair (forelimbs and hindlimbs) and after a thoracic contusion SCI significantly improved locomotor function. These observations lead us to speculate that the LAPNs and LDPNs have similar roles in the exchange of temporal information between the cervical and lumbar rhythm generating centers, but that the partial disruption of the pathway after SCI limits the independent function of the lumbar circuitry. Silencing the LAPNs or LDPNs effectively permits or frees-up the lumbar circuitry to function independently.


Subject(s)
Contusions , Spinal Cord Injuries , Rats , Animals , Spinal Cord/physiology , Neurons/physiology , Spinal Cord Injuries/genetics , Hindlimb/physiology , Lower Extremity , Locomotion/physiology
19.
Int. j. morphol ; 37(2): 620-625, June 2019. tab, graf
Article in English | LILACS | ID: biblio-1002267

ABSTRACT

Determining kinematics of hindlimbs of theropod dinosaurs has been a challenge. Since cursorial birds are phylogenetically closest to theropod dinosaurs they are commonly used as a kinematic model of theropod dinosaur locomotion. Using a comparative biomechanical approach, we found that cursorial birds have a different morphology of legs than non avian theropodos and that appears to be that felines and ungulates share more morphological properties in the hindlimbs with theropod dinosaurs than cursorial birds. We calculated the ratio between the lower leg and the femur, and the relative length of the tibia and the metatarsus with respect to the length of the femur in cursorial birds, as well as felines, ungulates and non-avian theropods. We found that as the length of the femur increases, the length of the lower leg increases similarly in felines, ungulates and non-avian theropods. On the other hand, existing and extinct cursorial birds did not follow this pattern. This observation suggests that the hindlimb of cursorial birds are not well suited to serve as kinematic models for hindlimb of extinct theropod dinosaur locomotion.


Determinar la cinemática de los miembros pelvianos de los dinosaurios terópodos ha sido un desafío. Dado que las aves corredoras son filogenéticamente más cercanas a los dinosaurios terópodos, son comúnmente utilizadas como modelo cinemático de la locomoción del dinosaurio terópodo. Usando un enfoque biomecánico comparativo, encontramos que las aves corredoras tienen una morfología de pies diferente a la de los terópodos no aviares y parece ser que los felinos y los ungulados comparten más propiedades morfológicas en los pies con los dinosaurios terópodos que las aves corredoras. Calculamos la proporción entre la parte inferior de la pierna y el fémur, y la longitud relativa de la tibia y el metatarso con respecto a la longitud del fémur en aves corredoras, así como en los terópodos no aviares y ungulados. Encontramos que a medida que aumenta la longitud del fémur, la longitud de la parte inferior de la pierna aumenta de manera similar en los terópodos, los ungulados y los terópodos no aviares. Por otro lado, las aves corredoras existentes y extintas no siguieron este patrón. Esta observación sugiere que el miembro pelviano de las aves corredoras no es adecuada para servir como modelos cinemáticos de locomoción del miembro pelviano del dinosaurio terópodo extinto.


Subject(s)
Animals , Biomechanical Phenomena/physiology , Birds/physiology , Dinosaurs/physiology , Hindlimb/physiology , Locomotion/physiology , Posture , Birds/anatomy & histology , Walking/physiology , Dinosaurs/anatomy & histology , Hindlimb/anatomy & histology , Models, Biological
20.
Int. arch. otorhinolaryngol. (Impr.) ; 19(1): 30-33, Jan-Mar/2015. tab
Article in English | LILACS | ID: lil-741538

ABSTRACT

Introduction The first locus for nonsyndromic autosomal recessive hearing loss is on chromosome 13q11-22. The 35delGmutation is present in 80% of cases in which GJB2 is involved, which makes the study of this mutation very important. The viability and benefits of screening for mutations in the connexin 26 gene are now beginning to change the diagnostic evaluation and identification of the etiology of hearing loss. Objective To investigate the occurrence of the 35delG mutation in patients with nonsyndromic sensorineural hearing loss and their first degree relatives. Methods This transversal study included 72 patients from the local hospital. The patients were divided into three groups: group A, sensorineural hearing loss (n = 58); group B, first-degree relatives of group A with sensorineural hearing loss (n = 09); and group C, first-degree relatives of patients from group A without hearing loss (n = 05). All patients had audiological evaluation and genetic testing of the 35delG mutation. Results The 35delG mutation was found in four heterozygous mutations (three of them found in the same family). The other heterozygous mutation was found in a female patient with bilateral, moderate, prelingual, sensorineural hearing loss. A single homozygous mutation was found in a male patient, with severe sensorineural hearing loss in his right ear and profound hearing loss in the left ear. Conclusions The 35delG mutation was found in 7% of the cases. The test is easy to perform and inexpensive, but it is necessary to investigate other genes related to hearing loss. .


Subject(s)
Animals , Male , Cardiovascular Diseases/prevention & control , Hindlimb/physiology , Movement , Spinal Cord Injuries/physiopathology , Ventricular Function
SELECTION OF CITATIONS
SEARCH DETAIL