Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.409
Filter
1.
Nat Commun ; 15(1): 3749, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702311

ABSTRACT

Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Humans , Female , Mice , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Mice, Knockout
2.
Xenotransplantation ; 31(3): e12862, 2024.
Article in English | MEDLINE | ID: mdl-38761019

ABSTRACT

Prolonged survival in preclinical renal xenotransplantation demonstrates that early antibody mediated rejection (AMR) can be overcome. It is now critical to evaluate and understand the pathobiology of late graft failure and devise new means to improve post xenograft outcomes. In renal allotransplantation the most common cause of late renal graft failure is transplant glomerulopathy-largely due to anti-donor MHC antibodies, particularly anti-HLA DQ antibodies. We evaluated the pig renal xenograft pathology of four long-surviving (>300 days) rhesus monkeys. We also evaluated the terminal serum for the presence of anti-SLA class I and specifically anti-SLA DQ antibodies. All four recipients had transplant glomerulopathy and expressed anti-SLA DQ antibodies. In one recipient tested for anti-SLA I antibodies, the recipient had antibodies specifically reacting with two of three SLA I alleles tested. These results suggest that similar to allotransplantation, anti-MHC antibodies, particularly anti-SLA DQ, may be a barrier to improved long-term xenograft outcomes.


Subject(s)
Graft Rejection , Heterografts , Histocompatibility Antigens Class I , Kidney Transplantation , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Graft Rejection/immunology , Kidney Transplantation/methods , Histocompatibility Antigens Class I/immunology , Swine , Heterografts/immunology , Histocompatibility Antigens Class II/immunology , Graft Survival/immunology , Isoantibodies/immunology , Humans
3.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732029

ABSTRACT

Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. Vitamin D receptor activation modulates the biology of vascular smooth muscle cells and has been reported to protect from neointimal hyperplasia following endothelial injury. However, the molecular mechanisms are poorly understood. We have now explored the impact of the selective vitamin D receptor activator, paricalcitol, on neointimal hyperplasia, following guidewire-induced endothelial cell injury in rats, and we have assessed the impact of paricalcitol or vehicle on the expression of key cell stress factors. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the expression of the growth factor growth/differentiation factor-15 (GDF-15), the cytokine receptor CD74, NFκB-inducing kinase (NIK, an upstream regulator of the proinflammatory transcription factor NFκB) and the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Immunohistochemistry confirmed the increased expression of the cellular proteins CD74 and NIK. Paricalcitol (administered in doses of 750 ng/kg of body weight, every other day) had a non-significant impact on neointimal hyperplasia and luminal stenosis. However, it significantly decreased GDF-15, CD74, NIK and MCP-1/CCL2 mRNA expression, which in paricalcitol-injured arteries remained within the levels found in control vehicle sham arteries. In conclusion, paricalcitol had a dramatic effect, suppressing the stress response to guidewire-induced endothelial cell injury, despite a limited impact on neointimal hyperplasia and luminal stenosis. This observation identifies novel molecular targets of paricalcitol in the vascular system, whose differential expression cannot be justified as a consequence of improved tissue injury.


Subject(s)
Anti-Inflammatory Agents , Chemokine CCL2 , Ergocalciferols , Hyperplasia , Animals , Rats , Ergocalciferols/pharmacology , Male , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Anti-Inflammatory Agents/pharmacology , Neointima/metabolism , Neointima/pathology , Neointima/drug therapy , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Tunica Intima/pathology , Tunica Intima/drug effects , Tunica Intima/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Histocompatibility Antigens Class II
5.
Front Immunol ; 15: 1349030, 2024.
Article in English | MEDLINE | ID: mdl-38590523

ABSTRACT

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Subject(s)
Parkinson Disease , Retroelements , Humans , Retroelements/genetics , Parkinson Disease/genetics , Dopamine , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genotype
6.
Front Immunol ; 15: 1342335, 2024.
Article in English | MEDLINE | ID: mdl-38596688

ABSTRACT

Introduction: Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic ß cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods: Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results: T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion: Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Peptides/metabolism , Histocompatibility Antigens Class II/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens/metabolism
7.
PLoS One ; 19(4): e0301175, 2024.
Article in English | MEDLINE | ID: mdl-38574067

ABSTRACT

BACKGROUND: Canonical α/ß T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/ß TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS: Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS: The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION: HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.


Subject(s)
Mesothelin , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Antigens, Neoplasm/metabolism , Neoplasms/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Peptides/metabolism , Histocompatibility Antigens/metabolism
8.
Sci Rep ; 14(1): 7966, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575727

ABSTRACT

The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Australia , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genetic Variation , COVID-19/genetics , Histocompatibility Antigens Class II/genetics , Major Histocompatibility Complex , Alleles
9.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200221, 2024 May.
Article in English | MEDLINE | ID: mdl-38579189

ABSTRACT

BACKGROUND AND OBJECTIVES: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS: We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS: Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQß1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION: Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , HLA-DQ beta-Chains , Interferon-Induced Helicase, IFIH1 , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , Interferon-Induced Helicase, IFIH1/genetics
10.
Vaccine ; 42(15): 3445-3454, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38631956

ABSTRACT

Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.


Subject(s)
Antibodies, Monoclonal , Macrophages , Salmonella typhimurium , Staphylococcus aureus , Animals , Cattle , Swine/immunology , Staphylococcus aureus/immunology , Antibodies, Monoclonal/immunology , Macrophages/immunology , Salmonella typhimurium/immunology , Histocompatibility Antigens Class II/immunology , Cross Reactions/immunology , Flow Cytometry , Mass Spectrometry , Mice
11.
J Immunother Cancer ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38609101

ABSTRACT

BACKGROUND: Despite the current therapeutic treatments including surgery, chemotherapy, radiotherapy and more recently immunotherapy, the mortality rate of lung cancer stays high. Regarding lung cancer, epigenetic modifications altering cell cycle, angiogenesis and programmed cancer cell death are therapeutic targets to combine with immunotherapy to improve treatment success. In a recent study, we uncovered that a molecule called QAPHA ((E)-3-(5-((2-cyanoquinolin-4-yl)(methyl)amino)-2-methoxyphenyl)-N-hydroxyacrylamide) has a dual function as both a tubulin polymerization and HDAC inhibitors. Here, we investigate the impact of this novel dual inhibitor on the immune response to lung cancer. METHODS: To elucidate the mechanism of action of QAPHA, we conducted a chemical proteomics analysis. Using an in vivo mouse model of lung cancer (TC-1 tumor cells), we assessed the effects of QAPHA on tumor regression. Tumor infiltrating immune cells were characterized by flow cytometry. RESULTS: In this study, we first showed that QAPHA effectively inhibited histone deacetylase 6, leading to upregulation of HSP90, cytochrome C and caspases, as revealed by proteomic analysis. We confirmed that QAPHA induces immunogenic cell death (ICD) by expressing calreticulin at cell surface in vitro and demonstrated its efficacy as a vaccine in vivo. Remarkably, even at a low concentration (0.5 mg/kg), QAPHA achieved complete tumor regression in approximately 60% of mice treated intratumorally, establishing a long-lasting anticancer immune response. Additionally, QAPHA treatment promoted the infiltration of M1-polarized macrophages in treated mice, indicating the induction of a pro-inflammatory environment within the tumor. Very interestingly, our findings also revealed that QAPHA upregulated major histocompatibility complex class II (MHC-II) expression on TC-1 tumor cells both in vitro and in vivo, facilitating the recruitment of cytotoxic CD4+T cells (CD4+CTL) expressing CD4+, NKG2D+, CRTAM+, and Perforin+. Finally, we showed that tumor regression strongly correlates to MHC-II expression level on tumor cell and CD4+ CTL infiltrate. CONCLUSION: Collectively, our findings shed light on the discovery of a new multitarget inhibitor able to induce ICD and MHC-II upregulation in TC-1 tumor cell. These two processes participate in enhancing a specific CD4+ cytotoxic T cell-mediated antitumor response in vivo in our model of lung cancer. This breakthrough suggests the potential of QAPHA as a promising agent for cancer treatment.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Proteomics , Up-Regulation , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600667

ABSTRACT

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding motifs. Based on the discovery, we make the preprocessing and coding closer to the natural biological process. Besides, due to the input being based on multiple types of features and the attention module focused on the BiGRU hidden layer, TripHLApan has learned more sequence level binding information. The application of transfer learning strategies ensures the accuracy of prediction results under special lengths (peptides in length 8) and model scalability with the data explosion. Compared with the current optimal models, TripHLApan exhibits strong predictive performance in various prediction environments with different positive and negative sample ratios. In addition, we validate the superiority and scalability of TripHLApan's predictive performance using additional latest data sets, ablation experiments and binding reconstitution ability in the samples of a melanoma patient. The results show that TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines. TripHLApan is publicly available at https://github.com/CSUBioGroup/TripHLApan.git.


Subject(s)
Cancer Vaccines , Humans , Protein Binding , Peptides/chemistry , HLA Antigens/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class I/chemistry , Machine Learning
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 603-609, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660873

ABSTRACT

OBJECTIVE: To investigate the accuracy of next-generation sequencing technology (NGS) in detecting the polymorphisms of HLA-DRB1, DQB1, DQA1, DRB3, DRB4, DRB5, DPA1 and DPB1 alleles in randomly-selected unrelated healthy individuals from Shenzhen Han population, investigate the potential reason for HLA-DRB1 allele dropout in routine NGS, and establish an internal quality control system. METHODS: NGS-based HLA class II genotyping was performed on 1 012 samples using the MiSeqDxTM platform. The suspected missed alleles indicated by the quality control software and HLA-DRB1 homozygotes were confirmed by PCR-SSOP or PCR-SBT methods. RESULTS: A total of 139 alleles were detected, including HLA-DRB1(45), DRB3(7), DRB4(5), DRB5(7), DQA1(17), DQB1(21), DPA1(10) and DPB1(27). HLA-DRB1*09:01(17.09%),15:01(10.72%); DRB3*02:02(25.99%),03:01(10.18%); DRB4*01:03(36.46%); DRB5*01:01(15.42%); DQA1*01:02(20.01%),03:02(17.19%); DQB1*03:01(19.47%),03:03(17.98%), 05:02(11.66%), 06:01(10.67%); DPA1*02:02(54.45%), 01:03(31.18%) and DPB1*05:01(39.13%), 02:01(16.90%) alleles were the most common alleles in Shenzhen Han population (frequencies >10%). There was no statistical difference between the gene frequencies of HLA-DRB1 and DQB1 loci in our study. The HLA Common and Well-Documented Alleles in China (CWD2.4) (χ2=12.68, P >0.05). 94 cases of HLA-DRB1 homozygous samples detected by NGS were retested by PCR-SSOP or SBT method, and one case of allele dropout at HLA-DRB1 locus was found. SBT method confirmed that the allele of DRB1*04:03 was missed. The laboratory internal quality control system was established. Two cases of new alleles were detected and named by WHO Nomenclature Committee for Factors of the HLA System. CONCLUSION: The HLA genotyping results based on NGS showed a significantly lower ambiguity rate. The HLA class II alleles exhibit genetic polymorphism in the Han population of unrelated healthy individuals in Shenzhen. The independent method based on NGS in clinical histocompatibility testing has limitations and requires internal quality control strategies to avoid allele-dropout events.


Subject(s)
East Asian People , Genotype , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II , Humans , Alleles , Gene Frequency , Polymorphism, Genetic , East Asian People/genetics , Histocompatibility Antigens Class II/genetics
15.
Nat Commun ; 15(1): 3637, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684665

ABSTRACT

In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.


Subject(s)
Antigen Presentation , Heart Injuries , Histocompatibility Antigens Class II , Regeneration , Zebrafish , Animals , Regeneration/immunology , Antigen Presentation/immunology , Heart Injuries/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Mice , CD4-Positive T-Lymphocytes/immunology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Cell Proliferation , Immunity, Innate , Heart/physiopathology , Heart/physiology , Mutation , Adaptive Immunity , Animals, Genetically Modified
16.
J Exp Clin Cancer Res ; 43(1): 128, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685050

ABSTRACT

BACKGROUND: Brain metastasis is one of the main causes of recurrence and death in non-small cell lung cancer (NSCLC). Although radiotherapy is the main local therapy for brain metastasis, it is inevitable that some cancer cells become resistant to radiation. Microglia, as macrophages colonized in the brain, play an important role in the tumor microenvironment. Radiotherapy could activate microglia to polarize into both the M1 and M2 phenotypes. Therefore, searching for crosstalk molecules within the microenvironment that can specifically regulate the polarization of microglia is a potential strategy for improving radiation resistance. METHODS: We used databases to detect the expression of MIF in NSCLC and its relationship with prognosis. We analyzed the effects of targeted blockade of the MIF/CD74 axis on the polarization and function of microglia during radiotherapy using flow cytometry. The mouse model of brain metastasis was used to assess the effect of targeted blockade of MIF/CD74 axis on the growth of brain metastasis. RESULT: Our findings reveals that the macrophage migration inhibitory factor (MIF) was highly expressed in NSCLC and is associated with the prognosis of NSCLC. Mechanistically, we demonstrated CD74 inhibition reversed radiation-induced AKT phosphorylation in microglia and promoted the M1 polarization in combination of radiation. Additionally, blocking the MIF-CD74 interaction between NSCLC and microglia promoted microglia M1 polarization. Furthermore, radiation improved tumor hypoxia to decrease HIF-1α dependent MIF secretion by NSCLC. MIF inhibition enhanced radiosensitivity for brain metastasis via synergistically promoting microglia M1 polarization in vivo. CONCLUSIONS: Our study revealed that targeting the MIF-CD74 axis promoted microglia M1 polarization and synergized with radiotherapy for brain metastasis in NSCLC.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Histocompatibility Antigens Class II , Lung Neoplasms , Macrophage Migration-Inhibitory Factors , Microglia , Animals , Female , Humans , Mice , Antigens, Differentiation, B-Lymphocyte/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Histocompatibility Antigens Class II/metabolism , Intramolecular Oxidoreductases/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Microglia/metabolism , Microglia/pathology
17.
Front Immunol ; 15: 1293706, 2024.
Article in English | MEDLINE | ID: mdl-38646540

ABSTRACT

Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.


Subject(s)
Antigen Presentation , Computational Biology , Histocompatibility Antigens Class II , Peptides , Humans , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Peptides/immunology , Computational Biology/methods , Protein Binding , Deep Learning , Algorithms
18.
J Virol ; 98(5): e0049324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38578092

ABSTRACT

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesviridae Infections , Interferon-gamma , Killer Cells, Natural , Receptors, Interferon , Rhadinovirus , Animals , CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/immunology , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Rhadinovirus/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , CD8-Positive T-Lymphocytes/immunology , CD11c Antigen/metabolism , CD11c Antigen/immunology , Lung/immunology , Lung/virology
19.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Promoter Regions, Genetic/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , HEK293 Cells , Down-Regulation/genetics , Antigen Presentation/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics
20.
Front Immunol ; 15: 1329032, 2024.
Article in English | MEDLINE | ID: mdl-38571959

ABSTRACT

The commonly used antibodies 3D12 and 4D12 recognise the human leukocyte antigen E (HLA-E) protein. These antibodies bind distinct epitopes on HLA-E and differ in their ability to bind alleles of the major histocompatibility complex E (MHC-E) proteins of rhesus and cynomolgus macaques. We confirmed that neither antibody cross-reacts with classical HLA alleles, and used hybrids of different MHC-E alleles to map the regions that are critical for their binding. 3D12 recognises a region on the alpha 3 domain, with its specificity for HLA-E resulting from the amino acids present at three key positions (219, 223 and 224) that are unique to HLA-E, while 4D12 binds to the start of the alpha 2 domain, adjacent to the C terminus of the presented peptide. 3D12 staining is increased by incubation of cells at 27°C, and by addition of the canonical signal sequence peptide presented by HLA-E peptide (VL9, VMAPRTLVL). This suggests that 3D12 may bind peptide-free forms of HLA-E, which would be expected to accumulate at the cell surface when cells are incubated at lower temperatures, as well as HLA-E with peptide. Therefore, additional studies are required to determine exactly what forms of HLA-E can be recognised by 3D12. In contrast, while staining with 4D12 was also increased when cells were incubated at 27°C, it was decreased when the VL9 peptide was added. We conclude that 4D12 preferentially binds to peptide-free HLA-E, and, although not suitable for measuring the total cell surface levels of MHC-E, may putatively identify peptide-receptive forms.


Subject(s)
HLA-E Antigens , Histocompatibility Antigens Class I , Humans , Epitopes , HLA Antigens , Peptides , Histocompatibility Antigens Class II , Antibodies, Monoclonal
SELECTION OF CITATIONS
SEARCH DETAIL
...