Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Pest Manag Sci ; 80(3): 1382-1399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37926485

ABSTRACT

BACKGROUND: γ-Aminobutyric acid (GABA) receptors (GABARs) are validated targets of insecticides. Bicyclophosphorothionates are a group of insecticidal compounds that act as noncompetitive antagonists of GABARs. We previously reported that the analogs exhibit various degrees of selectivity for housefly versus rat GABARs, depending on substitutions at the 3- and 4-positions. We here sought to elucidate the unsolved mechanisms of the receptor selectivity using quantitative structure-activity relationship (QSAR), molecular docking, and molecular dynamics approaches. RESULTS: Three-dimensional (3D)-QSAR studies using Topomer comparative molecular field analysis quantitatively demonstrated how the introduction of a small alkyl group at the 3-position of bicyclophosphorothionates contributes to the housefly versus rat GABAR selectivity. To investigate the molecular mechanisms of the selective action, bicyclophosphorothionates were docked into housefly Resistance to dieldrin (RDL) GABAR and rat α1ß2γ2 GABAR homology models built using the published 3D-structures of human GABARs as templates. The results of molecular docking and molecular dynamics simulations revealed that the 2'Ala and 6'Thr residues of the RDL subunit within the channel are the key amino acids for binding to the housefly GABARs, whereas the 2'Ser residue of γ2 subunit plays a crucial role in binding to rat GABARs. CONCLUSION: We revealed the molecular mechanisms underlying the selective antagonistic action of bicyclophosphorothionates on housefly versus rat GABARs. The information presented should help design and develop novel, safe GABAR-targeting insecticides. © 2023 Society of Chemical Industry.


Subject(s)
Houseflies , Insecticides , Rats , Animals , Humans , Receptors, GABA/metabolism , Insecticides/chemistry , Houseflies/metabolism , Molecular Docking Simulation , GABA Antagonists/chemistry
2.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160324

ABSTRACT

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Subject(s)
Chitinases , Houseflies , Animals , Houseflies/genetics , Houseflies/metabolism , Chitinases/metabolism , Larva , Recombinant Proteins/genetics , Chitin/metabolism
3.
Int J Biol Macromol ; 253(Pt 4): 127024, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37769776

ABSTRACT

Populations of many insect species have evolved a variety of resistance mechanisms in response to insecticide selection. Current knowledge about mutations responsible for insecticide resistance is largely achieved from studies on target-site resistance, while much less is known about metabolic resistance. Although it is well known that P450 monooxygenases are one of the major players involved in insecticide metabolism and resistance, understanding mutation(s) responsible for CYP-mediated resistance has been a big challenge. In this study, we used the house fly to pursue a better understanding of P450 mediated insecticide resistance at the molecular level. Metabolism studies illustrated that CYP6G4 had a broad-spectrum metabolic activity in metabolizing insecticides. Population genotyping revealed that the CYP6G4v1 allele harboring a DNA insertion (MdIS1) had been selected in many house fly populations on different continents. Dual luciferase reporter assays identified that the MdIS1 contained a CncC/Maf binding site, and electrophoretic mobility shift assay confirmed that transcription factor CncC was involved in the MdIS1-mediated regulation. This study highlights the common involvement of the CncC pathway in adaptive evolution, and provides an interesting case supportive of parallel evolution in P450-mediated insecticide resistance in insects.


Subject(s)
Houseflies , Insecticides , Animals , Insecticides/pharmacology , Insecticides/metabolism , Houseflies/metabolism , Up-Regulation , Insecta/genetics , Binding Sites , Insecticide Resistance/genetics
4.
Int J Biol Macromol ; 236: 123399, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36775219

ABSTRACT

Long term and excessive insecticide use has resulted in some environmental problems and especially, insecticide resistance evolution in insect pests. The variation of cytochrome P450 monooxygenases (P450s), associated with the metabolic detoxification of toxic xenobiotics, is often involved in insecticide resistance. Here, we found that the variation in a P450 gene, CYP6G4, is the most important driver of carbamates resistance in the house fly (Musca domestica). Deciphering the detailed molecular mechanisms of the insecticide resistance is critical for performing suitable insecticide resistance management strategies. Our research results revealed that the combination of amino acid mutations (110C-330E-360N/S, 110C-330E-360S) of CYP6G4 could improve the resistance to propoxur. The nucleotide variations in the promoter region of CYP6G4 significantly increased the luciferase activity by the reporter gene assays. Additionally, miR-281-1-5p was confirmed to post-transcriptionally down-regulate the expression of CYP6G4. These findings suggest that three independent mechanisms; amino acid mutations of the P450 protein, mutations in the promoter region and low expression of post-trans-regulatory factors, as the powerful strategies for the insect resistance to toxic compounds, play a crucial role in the evolutionary processes of insecticide resistance.


Subject(s)
Houseflies , Insecticides , Muscidae , Animals , Insecticides/metabolism , Houseflies/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insecticide Resistance/genetics
5.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834582

ABSTRACT

This paper reports a study conducted at the whole transcriptome level to characterize the P450 genes involved in the development of pyrethroid resistance, utilizing expression profile analyses of 86 cytochrome P450 genes in house fly strains with different levels of resistance to pyrethroids/permethrin. Interactions among the up-regulated P450 genes and possible regulatory factors in different autosomes were examined in house fly lines with different combinations of autosomes from a resistant house fly strain, ALHF. Eleven P450 genes that were significantly up-regulated, with levels > 2-fold those in the resistant ALHF house flies, were in CYP families 4 and 6 and located on autosomes 1, 3 and 5. The expression of these P450 genes was regulated by trans- and/or cis-acting factors, especially on autosomes 1 and 2. An in vivo functional study indicated that the up-regulated P450 genes also conferred permethrin resistance in Drosophila melanogaster transgenic lines. An in vitro functional study confirmed that the up-regulated P450 genes are able to metabolize not only cis- and trans-permethrin, but also two metabolites of permethrin, PBalc and PBald. In silico homology modeling and the molecular docking methodology further support the metabolic capacity of these P450s for permethrin and substrates. Taken together, the findings of this study highlight the important function of multi-up-regulated P450 genes in the development of insecticide resistance in house flies.


Subject(s)
Houseflies , Insecticides , Animals , Permethrin , Houseflies/genetics , Houseflies/metabolism , Insecticides/pharmacology , Up-Regulation , Drosophila melanogaster/metabolism , Molecular Docking Simulation , Cytochrome P-450 Enzyme System/metabolism , Insecticide Resistance/genetics
6.
Insect Mol Biol ; 32(2): 200-212, 2023 04.
Article in English | MEDLINE | ID: mdl-36522831

ABSTRACT

The gastrointestinal tract of all animals, including insects, is colonized by a remarkable array of microorganisms which are referred to collectively as the gut microbiota. The hosts establish mutually beneficial interactions with the gut microbiota. However, the mechanisms shaping these interactions remain to be better understood. Here, we investigated the roles of Musca domestica peptidoglycan recognition protein SC (MdPGRP-SC), a secreted pattern recognition receptor, in shaping the gut microbial community structure by using biochemical and high-throughput sequencing approaches. The recombinant MdPGRP-SC (rMdPGRP-SC) could strongly bind various pathogen-associated molecular patterns (PAMPs) including peptidoglycan, lipopolysaccharide and D-galactose, and exhibited mild affinity to ß-1, 3-glucan and D-mannose. Meanwhile, rMdPGRP-SC could also bind different kinds of microorganisms, including gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Pichia pastoris). rMdPGRP-SC also exhibited weak antibacterial activity against Bacillus subtilis. Knockdown of MdPGRP-SC by RNAi reduced the persistence of ingested E. coli and a load of indigenous microbiota in the larval gut significantly. In addition, depleted MdPGRP-SC also altered the gut microbiota composition and led to increased ratios of Gram-negative bacteria. We hypothesize that MdPGRP-SC is involved in maintaining gut homeostasis by modulating the immune intensity of the gut through multiple mechanisms, including degrading or neutralizing various PAMPs and selectively suppressing the growth of some bacteria. Considering the functional conservation of the peptidoglycan recognition protein (PGRP) family in insects, the catalytic PGRPs might be promising candidate targets not only for pest and vector control but also for the treatment of bacterial infection in insect farming.


Subject(s)
Gastrointestinal Microbiome , Houseflies , Animals , Houseflies/metabolism , Escherichia coli , Pathogen-Associated Molecular Pattern Molecules , Peptidoglycan/metabolism , Immunity, Innate
7.
Bioorg Chem ; 130: 106258, 2023 01.
Article in English | MEDLINE | ID: mdl-36371818

ABSTRACT

A number of novel annulated pyrazolopyranopyrimidines were prepared via reaction of iminoether of the corresponding 6-amino-5-cyano-pyrano[2,3-c]pyrazole derivative 1 with different nitrogen nucleophiles. The structure of the synthesized compounds was deduced based on IR, MS, 1H NMR and 13C NMR spectroscopic data. The larvicidal potency of the synthesized compounds against the lab and field strains of Culex pipiens and Musca domestica larvae was evaluated and the structure-activity relationship (SAR) was discussed. The assay revealed that the tested pyranopyrazole derivatives exhibited good larvicidal bio-efficacy whereas iminoether 4 exhibited the highest efficiency, for lab more than field strains of both species. Also, M. domestica larvae were more sensitive to tested compounds than C. pipiens. The field strain showed low resistance ratios to all compounds with only about 2 folds. The inhibitory effects of synthesized molecules on nAChRs were evaluated by molecular docking. Moreover, the cytotoxicity of the newly synthesized compounds against normal human fibroblasts (WI-38) was investigated. The cytotoxic assay showed that derivatives 4 and 5 were not harmful to normal fibroblasts.


Subject(s)
Culex , Houseflies , Insecticides , Pyrazoles , Animals , Humans , Culex/drug effects , Culex/metabolism , Houseflies/drug effects , Houseflies/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Larva , Molecular Docking Simulation , Pyrazoles/chemistry , Pyrazoles/pharmacology
8.
J Nat Med ; 77(1): 96-108, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36136205

ABSTRACT

Neuroprotective antioxidants, especially peptide-based antioxidants, are effective against oxidative stress in neurodegenerative disorders. In this study, we measured the neuroprotective effects of the antioxidant peptide DFTPVCTTELGR (DR12) from housefly Musca domestica L. pupae. Treatment of PC12 and HT22 cells with DR12 significantly reduced glutamate-induced cytotoxicity. Peptide DR12 appeared to exert its neuroprotective effects by attenuating production of reactive oxygen species and malonaldehyde, upregulating the endogenous antioxidants superoxide dismutase and glutathione, and reversing the loss of mitochondrial membrane potential. In addition, DR12 treatment activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Structure-activity analysis indicated that the superior neuroprotective function of DR12 was related to its cysteine residue. In summary, DR12 may be an attractive therapeutic peptide or precursor to treat neurodegenerative diseases.


Subject(s)
Houseflies , Neuroprotective Agents , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Houseflies/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Peptides/pharmacology , Structure-Activity Relationship , NF-E2-Related Factor 2/metabolism , Heme Oxygenase-1/metabolism
9.
J Insect Sci ; 22(5)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36315471

ABSTRACT

The 14-3-3 gene plays important role in many biological processes, including cell survival, apoptosis, and signal transduction. However, function of the 14-3-3 homologous gene in Musca domestica remains unclear. Here, we identified and characterized the 14-3-3ζ of M. domestica. We found that Md14-3-3ζ gene was highly homologous with other close insects. The qRT-PCR analysis revealed that the Md14-3-3ζ was highly expressed in adults, and was expressed predominantly in hemocytes and fat body. Meanwhile, the expression of Md14-3-3ζ was up-regulated after injecting Escherichia coli and Staphylococcus aureus. Moreover, the recombinant protein rMd14-3-3ζ strongly inhibits the growth of E. coli and S. aureus. Notably, the rMd14-3-3ζ inhibits E. coli and S. aureus by permeating the cell membrane. Taken together, our findings suggested that Md14-3-3ζ is involved in the immune response against bacteria through damaging the cell membrane.


Subject(s)
Bacterial Infections , Houseflies , Muscidae , Animals , Houseflies/metabolism , Staphylococcus aureus , Escherichia coli/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
10.
J Environ Manage ; 323: 116295, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150354

ABSTRACT

The environmental pollution caused by silkworm (Bombyx mori) excrement is prominent, and rich in refractory cellulose is the bottleneck restricting the efficient recycling of silkworm excrement. This study was performed to investigate the effects of housefly larvae vermicomposting on the biodegradation of cellulose in silkworm excrement. After six days, a 58.90% reduction of cellulose content in treatment groups was observed, which was significantly higher than 11.5% of the control groups without housefly larvae. Three cellulose-degrading bacterial strains were isolated from silkworm excrement, which were identified as Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis based on 16S rRNA gene sequence analysis. These three bacterial stains had a high cellulose degradation index (HC value ranged to between 1.86 and 5.97 and FPase ranged from 5.07 U/mL to 7.31 U/mL). It was found that housefly larvae increased the abundance of cellulose-degrading bacterial genus (Bacillus and Pseudomonas) by regulating the external environmental conditions (temperature and pH). Carbohydrate metabolism was the bacterial communities' primary function during vermicomposting based on the PICRUSt. The results of Tax4Fun indicated that the abundance of endo-ß-1,4-glucanase and exo-ß-1,4-glucanase increased rapidly and maintained at a higher level in silkworm excrement due to the addition of housefly larvae, which contributed to the accelerated degradation of cellulose in silkworm excrement. The finding of this investigation showed that housefly larvae can significantly accelerate the degradation of cellulose in silkworm excrement by increasing the abundance of cellulose-degrading bacterial genera and cellulase.


Subject(s)
Bombyx , Houseflies , Animals , Bacillus subtilis/metabolism , Bombyx/genetics , Bombyx/metabolism , Bombyx/microbiology , Cellulose/metabolism , Glucan 1,4-beta-Glucosidase/metabolism , Houseflies/genetics , Houseflies/metabolism , Larva/metabolism , Larva/microbiology , RNA, Ribosomal, 16S/genetics
11.
Article in English | MEDLINE | ID: mdl-35017045

ABSTRACT

Chitinases are hydrolytic enzymes that play important roles in chitin degradation during the insect development process, and thus are considered as the potential targets for pest management. Here, we identified and characterized the group VII chitinase gene from health pest Musca domestica (MdCht2). We found that MdCht2 was 1932 bp in length with an open reading frame of 1530 bp, which encodes a polypeptide of 509 amino acid residues. Phylogenetic analysis showed that MdCht2 gene was homologs with other closed insects, and belong to the group VII chitinases. Moreover, Real-time PCR analysis indicated that MdCht2 mRNA was highly expressed in pupa stage, as well as in integument and trachea. However, RNAi-mediated knockdown of MdCht2 resulted in high mortality rates and abnormal eclosion. Therefore, we hypothesized that MdCht2 was a crucial gene required for housefly development, which was supported by the transcription level of MdCht2 could be induced by 20-hydroxyecdysone (20E), and the dsMdCht2 could resulted in decrease of the chitinase activity and increase of the chitin content. Taken together, our findings suggested that MdCht2 regulated the chitin content via chitinases, thereby leading to abnormal development. Our results provide a potential target for M. domestica management.


Subject(s)
Chitinases , Houseflies , Moths , Animals , Chitinases/genetics , Chitinases/metabolism , Houseflies/genetics , Houseflies/metabolism , Phylogeny , Pupa
12.
BMC Microbiol ; 21(1): 346, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911456

ABSTRACT

BACKGROUND: House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. RESULTS: Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. CONCLUSIONS: House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations.


Subject(s)
Houseflies/metabolism , Manure/microbiology , Microbiota , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carbon/analysis , Cattle , Eukaryota/classification , Eukaryota/genetics , Eukaryota/isolation & purification , Houseflies/growth & development , Larva/growth & development , Larva/metabolism , Manure/analysis , Nitrogen/analysis , RNA, Ribosomal/genetics
13.
Insect Biochem Mol Biol ; 139: 103653, 2021 12.
Article in English | MEDLINE | ID: mdl-34600101

ABSTRACT

In mosquitoes, indolic compounds are detected by a group of olfactory indolergic Odorant Receptors (indolORs). The ancient origin of indole and 3-methylindole as chemical signals suggest that they may be detected by insects outside the Culicidae clade. To test this hypothesis, we have identified potential indolOR genes in brachyceran flies based on sequence homology. Because of the crucial roles of indolic compounds in oviposition and foraging, we have focused our attention on the housefly Musca domestica. Using a heterologous expression system, we have identified indolOR transcript expression in the female antennae, and have characterized MdomOR30a and MdomOR49b as 3-methylindole and indole receptors, respectively. We have identified a set of 92 putative indolOR genes encoded in the genomes of Culicoidea, Psychodidae and brachycera, described their phylogenetic relationships, and exon/intron structures. Further characterization of indolORs will impact our understanding of insect chemical ecology and will provide targets for the development of novel odor-based tools that can be integrated into existing vector surveillance and control programs.


Subject(s)
Houseflies/genetics , Indoles/metabolism , Insect Proteins/genetics , Receptors, Odorant/genetics , Animals , Arthropod Antennae/metabolism , Female , Houseflies/metabolism , Insect Proteins/metabolism , Receptors, Odorant/metabolism
14.
Mol Biol Evol ; 38(2): 606-618, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32986844

ABSTRACT

X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene's function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.


Subject(s)
Biological Evolution , Houseflies/genetics , Sex Chromosomes , Animals , Female , Gene Expression , Houseflies/metabolism , Male , Testis/metabolism
15.
J Insect Sci ; 20(6)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33347588

ABSTRACT

Peritrophic matrix/membrane (PM) critically prevents the midgut of insects from external invasion by microbes. The proteins in the peritrophic membrane are its major structural components. Additionally, they determine the formation and function of this membrane. However, the role of PM proteins in immune regulation is unclear. Herein, we isolated a novel PM protein (MdPM-17) from Musca domestica larvae. Further, the function of MdPM-17 in regulating host innate immunity was identified. Results showed that the cDNA of MdPM-17 full is 635 bp in length. Moreover, it consists of a 477-bp open reading frame encoding 158 amino acid residues. These amino acid residues are composed of two Chitin-binding type-2 domain (ChtBD2) and 19 amino acids as a signal peptide. Moreover, tissue distribution analysis indicates that MdPM-17 was enriched expressed in midgut, and moderate levels in the fat body, foregut, and malpighian tubule. Notably, MdPM-17 recombinant protein showed high chitin-binding capacity, thus belongs to the Class III PM protein group. MdPM-17 protein silencing via RNA interference resulted in the expression of antimicrobial peptide (defensin, cecropins, and diptericin) genes, and this occurred after oral inoculation with exogenous microbes Escherichia coli (Enterobacteriales:Enterobacteriaceae), Staphylococcus aureus (Bacillales:Staphylococcaceae), and Candida albicans (Endomycetales:Saccharomycetaceae)). Therefore, all the antimicrobial peptide (AMP) gene expression levels are high in MdPM-17-depleted larvae during microbial infection compared to controls. Consequently, these findings indicate that MdPM-17 protein is associated with the antibacterial response from the housefly.


Subject(s)
Houseflies/immunology , Insect Proteins/isolation & purification , Intestines/immunology , Animals , Antimicrobial Cationic Peptides/metabolism , Gene Expression Profiling , Genes, Insect , Houseflies/genetics , Houseflies/metabolism , Immunity, Innate/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/immunology , Larva/metabolism , Oligonucleotide Array Sequence Analysis , RNA Interference
16.
J Agric Food Chem ; 68(50): 15005-15014, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33269911

ABSTRACT

To control the development of resistance to conventional insecticides acting as γ-aminobutyric acid (GABA) receptor antagonists (e.g., fipronil), new GABAergic 5,5-disubstituted 4,5-dihydropyrazolo[1,5-a]quinazolines were designed via a scaffold-hopping strategy and synthesized with a facile method. Among the 50 target compounds obtained, compounds 5a, 5b, 7a, and 7g showed excellent insecticidal activities against a susceptible strain of Plutella xylostella (LC50 values ranging from 1.03 to 1.44 µg/mL), which were superior to that of fipronil (LC50 = 3.02 µg/mL). Remarkably, the insecticidal activity of compound 5a was 64-fold better than that of fipronil against the field population of fipronil-resistant P. xylostella. Electrophysiological studies against the housefly GABA receptor heterologously expressed in Xenopus oocytes indicated that compound 5a could act as a potent GABA receptor antagonist, and IC50 was calculated to be 32.5 nM. Molecular docking showed that the binding poses of compound 5a with the housefly GABA receptor can be different compared to fipronil, which explains the effectiveness of compound 5a against fipronil-resistant insects. These findings have suggested compound 5a as a lead compound for a novel GABA receptor antagonist controlling field-resistant insects and provided a basis for further design, structural modification, and development of 4,5-dihydropyrazolo[1,5-a]quinazoline motifs as new insecticidal GABA receptor antagonists.


Subject(s)
GABA Antagonists/chemistry , GABA Antagonists/pharmacology , Houseflies/drug effects , Insect Proteins/antagonists & inhibitors , Insecticides/chemical synthesis , Insecticides/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Animals , Drug Design , Houseflies/chemistry , Houseflies/genetics , Houseflies/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Insecticides/chemistry , Molecular Docking Simulation , Receptors, GABA/chemistry , Receptors, GABA/metabolism
17.
J Nutr Sci Vitaminol (Tokyo) ; 66(5): 409-416, 2020.
Article in English | MEDLINE | ID: mdl-33132343

ABSTRACT

The Musca domestica larvae are well known for its multifunctions and great nutritional value. The present study aimed at investigating the beneficial effect of Musca domestica larvae extract (Mde) against memory impairment, structural damage and oxidative stress in aged rats. Twenty-month-old rats were gavaged with Mde for 2 mo. Morris Water Maze test indicated Mde prevented aging-induced spatial learning and memory dysfunction in the aged rats. Mde supply was also found to attenuate age-associated changes of brain histology that observed by light microscopy and transmission electron microscopy. Moreover, the increase of antioxidant capacity, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, as well as the decreased methane dicarboxylic aldehyde (MDA) levels, were consistent with these results. Hence, we propose that oral administration of Mde could improve memory impairment via antioxidant action, and Mde has the potential to act as an excellent food supplement or medicine for the attenuation of brain aging.


Subject(s)
Aging , Brain , Houseflies , Animals , Antioxidants , Brain/metabolism , Glutathione Peroxidase/metabolism , Houseflies/metabolism , Larva , Maze Learning , Oxidative Stress , Rats , Superoxide Dismutase/metabolism
18.
Food Chem Toxicol ; 138: 111203, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32074491

ABSTRACT

Thymus alternans and Teucrium montanum subsp. jailae are medicinal and aromatic plants, typical of Slovakian flora, producing bioactive essential oils. In the present study, we evaluated the insecticidal potential of the essential oils, obtained by hydrodistillation from the plant aerial parts and analysed by GC-MS, as insecticidal agents. For the purpose, they were assayed against three insect species acting as agricultural pests or vectors of medical relevance, such as the common housefly, Musca domestica L., the lymphatic filariasis vector, Culex quinquefasciatus and the Egyptian cotton leafworm Spodoptera littoralis; α-cypermethrin was tested as positive control. The two essential oils exhibited a different chemical profile, with monoterpenes and sesquiterpenes being the main fractions in the essential oils from Th. alternans and T. montanum subsp. jailae, respectively. Insecticidal tests showed that the T. montanum essential oil was effective against S. littoralis (LD50(90) = 56.7 (170.0) µg larva-1) and Cx. quinquefasciatus larvae (LC50(90) = 180.5 (268.7) mg L-1), whereas T. alternans essential oil displayed good toxicity against M. domestica adults (LD50(90) = 103.7 (223.9) µg adult-1). Overall, our results add useful knowledge about the potential of Slovakian flora as a source of botanicals for the eco-friendly management of insect pests and vectors.


Subject(s)
Insecticides/pharmacology , Oils, Volatile/pharmacology , Plants, Medicinal/chemistry , Teucrium/chemistry , Thymus Plant/chemistry , Animals , Culex/drug effects , Culex/metabolism , Female , Gas Chromatography-Mass Spectrometry , Houseflies/drug effects , Houseflies/metabolism , Insecticides/analysis , Larva/drug effects , Larva/metabolism , Monoterpenes/analysis , Monoterpenes/pharmacology , Oils, Volatile/analysis , Pyrethrins/analysis , Pyrethrins/pharmacology , Sesquiterpenes/analysis , Sesquiterpenes/pharmacology , Slovakia , Spodoptera/drug effects , Spodoptera/metabolism
19.
Int J Biol Macromol ; 150: 141-151, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32045613

ABSTRACT

Toll-like receptors (TLRs) are the earliest reported pathogen recognition receptors (PRRs), and these receptors play pivotal roles in the innate immune system. Systematic studies of TLR family at the genome-wide level are important to understand its functions but are currently lacking in the insect lineage. Here, 6 TLR genes were identified and characterized in housefly (Musca domestica). The TLR genes of housefly were classified into five families according to the phylogenetic analysis of insect TLRs. The domain organization analyses indicated that the TLRs were composed by three major components: a leucine-rich repeat (LRR) domain, a transmembrane region (TM) and a Toll/interleukin-1 receptor (TIR) domain. Primary and tertiary structure analysis showed that the ectodomains of arthropod TLRs were longer than that of other phyla or classes. The mRNA expression levels of all 6 TLRs downregulated in the resistant housefly strain. Moreover, the expression levels of 6 TLRs varied between tissue and gender. Additionally, the 3D structures of the TIR domain were highly conserved during evolution. Collectively, these results help elucidate the crucial roles of TLRs in the immune response of housefly and provide a foundation for further understanding of innate immunity of the housefly.


Subject(s)
Genome, Insect , Genomics , Houseflies/drug effects , Houseflies/genetics , Insecticide Resistance/genetics , Toll-Like Receptors/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Evolution, Molecular , Female , Genomics/methods , Houseflies/metabolism , Immunity, Innate , Male , Models, Molecular , Multigene Family , Organ Specificity/genetics , Phylogeny , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Interaction Maps , Sex Factors , Toll-Like Receptors/chemistry
20.
Trop Biomed ; 37(3): 744-755, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33612787

ABSTRACT

The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.


Subject(s)
Cytosol/metabolism , Houseflies/metabolism , Oxidative Stress , Proteome , Animals , Larva , Lipid Peroxidation
SELECTION OF CITATIONS
SEARCH DETAIL
...