Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.495
Filter
1.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731606

ABSTRACT

The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.


Subject(s)
Glucose , Humic Substances , Maillard Reaction , Polyphenols , Humic Substances/analysis , Glucose/chemistry , Glucose/metabolism , Polyphenols/chemistry , Catechols/chemistry
2.
J Hazard Mater ; 471: 134398, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677124

ABSTRACT

Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.3 % and 9.7 %, respectively, and significantly increased the humification index (P < 0.05) compared to the CK (addition of tap water). The passivation of HMs (Zn, Cu, As, Pb, and Cr) increased by 12.17-23.36 % and 9.74-15.95 % for RH-SS and SS, respectively, compared with that for CK. RH-SS and SS reduced the HMRG abundance in composted products by 22.29 % and 15.07 %, respectively. The partial least squares path modeling results showed that SS and RH-SS promoted compost humification while simultaneously altering the bacterial community and reducing the bioavailability of metals and host abundance of HMRGs, which has a direct inhibitory effect on the production and distribution of HMRGs. These findings support a new strategy to reduce the environmental risk of HMs and HMRGs in livestock manure utilization.


Subject(s)
Chickens , Composting , Manure , Metals, Heavy , Sewage , Animals , Metals, Heavy/toxicity , Humic Substances/analysis , Carbon/chemistry , Soil Pollutants/toxicity , Oryza/metabolism
3.
Chemosphere ; 357: 142043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626810

ABSTRACT

Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.


Subject(s)
Endocrine Disruptors , Estrogens , Soil Pollutants , Soil , Estrogens/chemistry , Estrogens/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Endocrine Disruptors/chemistry , Endocrine Disruptors/analysis , Soil/chemistry , Humic Substances/analysis , Biodegradation, Environmental , Persistent Organic Pollutants/chemistry , Environmental Monitoring
4.
Braz J Biol ; 84: e281235, 2024.
Article in English | MEDLINE | ID: mdl-38656077

ABSTRACT

The increase in prices of fertilizers, energy and other materials necessary for the industry triggered a global economic crisis. Reason that was investigated on the biological and chemical characteristics in relation to the yield of radish nourished with humus from plant residue. The objective was to determine the appropriate dose of humus to obtain greater yield and its relationship with the chemical and biological characteristics of the radish. It is based on applied methodology with an experimental approach; Therefore, the Completely Random Block Design model was used, which consisted of 3 blocks and 5 treatments that were T1 with 0, T2 with 4, T3 with 6, T4 with 8 and T5 with 10 t/ha of humus and They applied 15 days after sowing. The physical characteristics of the radish were evaluated and processed using analysis of variance and Duncan. Concentration of elements in leaves and stomatal density were also analyzed. It was determined that T5 stood out in total plant length with 28.95 cm, plant weight with 76.87 g, equatorial diameter with 4,404 cm and commercial yield with 20,296 t/ha. Nitrogen consumption in relation to yield with 247.44 kg/ha. Stomatal density 459 stomata/mm2 and profitability with 150% and nutrient concentration in leaves highlighted T4 with N, K, Ca, Mg, Mo and Zn. It concludes that T5 stood out with 20,296 t/ha, which differed by 26.04% in relation to the control (T1) with 15,011 t/ha. Therefore, this dose added nutrients to the soil that improved the availability for plant absorption and this influenced the concentration of nutrients in leaves such as N, P and Fe and stomatal density with 459 stomata/mm2, which had a response in good development, strengthening against environmental stress and therefore greater performance.


Subject(s)
Fertilizers , Raphanus , Raphanus/chemistry , Raphanus/growth & development , Fertilizers/analysis , Humic Substances/analysis , Plant Leaves/chemistry , Nitrogen/analysis , Nitrogen/metabolism , Biomass
5.
Sci Rep ; 14(1): 8394, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600181

ABSTRACT

Antioxidants (AOX) in soils originate mainly from secondary plant metabolites and are pivotal in many redox processes in environment, maintaining soil quality. Still, little is known about the influence of land uses on their accumulation in soil. The aim of the paper was to determine the content of these redox-active compounds in the extracts of A horizons of abandoned fallows, arable and woodland soils. Total antioxidant capacity (TAC) of soils under various uses and vegetation was evaluated in different soil extracts using Folin-Ciocâlteu method. The contribution of humic acids to TAC was determined and antioxidant profiles estimated using the chromatographic GC-MS method. Forest soils exhibited the highest TAC (15.5 mg g-1) and AOX contents (4.34 mg g-1), which were positively correlated with soil organic carbon content. It was estimated that humic acids contribute to over 50% of TAC in soils. The main phenolics in woodland A horizons were isovanillic and p-hydroxybenzoic acid (p-HA), while esculetin and p-HA predominated in the abandoned fallows due to the prevalence of herbaceous vegetation. Cultivated soils were the most abundant in p-HA (56.42%). In the studied topsoils, there were considerable amounts of aliphatic organic matter, which role in redox processes should be further evaluated.


Subject(s)
Humic Substances , Soil , Soil/chemistry , Humic Substances/analysis , Antioxidants/analysis , Carbon/chemistry , Forests
6.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569966

ABSTRACT

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Subject(s)
Fertilizers , Humic Substances , Soil , Zea mays , Humic Substances/analysis , Soil/chemistry , Zea mays/growth & development , Republic of Korea , Agriculture/methods
7.
J Environ Manage ; 357: 120767, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560953

ABSTRACT

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Humic Substances/analysis , Soil/chemistry , Soil Microbiology , Herbicides/chemistry , Soil Pollutants/chemistry
8.
Medicina (Kaunas) ; 60(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38674192

ABSTRACT

Background and Objective: Sapropel, a biologically active sedimentary deposit, is high in organic matter and minerals and has been shown to offer health benefits. Its constituents, humic acid (HA) and fulvic acid (FA), have been found to have some therapeutic applications. The aim of this study was to determine the potential therapeutically significant properties of freshwater sapropel extracts: their polyacid content, antioxidative (AO) status, and biological activity in cell culture. Materials and Methods: Freshwater lakes from the southeast region of Latvia were investigated layer by layer. The total organic carbon (TOC) was determined through combustion using the catalytic oxidation method, HA and FA were measured via acid perspiration, and the total polyphenol content (TPC) and total antioxidant status (TAS) was analysed spectrophotometrically. Sapropel extracts' regenerative abilities were tested in vitro using a Cell-IQ real-time monitoring system on mouse BALB/c 3T3 fibroblasts and human keratinocyte HaCaT cell lines. Cytotoxicity was measured through neutral red uptake assessment as a concentration-dependent reduction in the uptake of neutral red dye relative to a vehicle control or untreated cells. Results: The highest AO activity was observed in sapropel extracts with elevated concentrations of HA and TPC from Audzelu Lake (1.08 ± 0.03 mmol/L), and the lowest activity was found in extracts from Ivusku Lake (0.31 ± 0.01 mmol/L). Correspondingly, the concentrations of HA in Audzelu and Ivusku Lakes were recorded as 45.2 and 27.4 mg/g, respectively. High concentrations of HA promoted in vitro cell growth upon short-term exposure (up to 6 h). Conclusions: The results show that high TPC correlates with AO status and sapropel extracts with higher concentrations of HA exhibit greater AO activity and promote in vitro cell growth, suggesting a perspective use for short-term topical therapeutic skin applications. However, higher concentrations over longer durations showed cytotoxic effects, indicating the need for further investigation.


Subject(s)
Antioxidants , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Antioxidants/therapeutic use , Mice , Humans , Skin Care/methods , Humic Substances/analysis , Benzopyrans/analysis , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Fresh Water/analysis , In Vitro Techniques , HaCaT Cells
9.
Ecotoxicol Environ Saf ; 277: 116377, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657454

ABSTRACT

The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.


Subject(s)
Antimony , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Antimony/chemistry , Antimony/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Environmental Monitoring/methods , Mining , Adsorption , Humic Substances/analysis
10.
Sci Total Environ ; 929: 172637, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663604

ABSTRACT

The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Cosmetics/analysis , Hydrogen-Ion Concentration , Humic Substances/analysis , Solid Phase Microextraction
11.
J Environ Manage ; 358: 120772, 2024 May.
Article in English | MEDLINE | ID: mdl-38608569

ABSTRACT

Increasing soil organic carbon (SOC) content is crucial for soil fertility, conservation, and combating climate-related issues by sequestering CO2. While existing studies explore the total content of SOC, few of them investigate the factors that favor its sequestration and the impact of land use type and management. This research aims to study the spatial variation of the total content and the quality or maturity (in terms of aromaticity) of the humic acid (HA) fraction, along with the factors that enhance its formation and conservation for a longer time in the soil. In addition, the study tries to evaluate the performance of the Regression Kriging (RK) method in producing interpolation maps that describe the natural variation of the SOC and its quality with the aim of defining and preventing soil degradation. Finally, the study aims to evaluate the impact of the land use type and the importance of dense vegetation in the sequestration of the organic carbon (OC) in the soil. The analysis of the SOC was performed in northeast Algeria's semi-arid climate, examining content, quality, and chemical composition. Using geostatistical methods (RK), SOC is correlated with most related factors, producing detailed interpolation maps. The results showed that the SOC and its HA fraction (both its total content and its degree of transformation or maturity (measured in terms of aromaticity and structural condensation) are highly correlated to the topography of the area (P < 0.05). Results reveal variations in HAs' composition across land covers. Notably, areas subjected to burning exhibited a 21% increase in HA aromaticity compared to forested regions and a 29% increase relative to cultivated areas. The study highlights that soil cover has a substantial influence on the performance of SOC sequestration, the forested areas have a positive impact on the storage of SOC in the form of HA with a more complex chemical composition that suggests increased aromaticity and resilience. As a whole, the results indicate the potential of geostatistical methods to provide valuable information about the factors that influence the current status and evolution of SOC in the study area.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Algeria , Carbon Sequestration , Humic Substances/analysis
12.
Bioresour Technol ; 400: 130696, 2024 May.
Article in English | MEDLINE | ID: mdl-38614144

ABSTRACT

Understanding large-scale composting under natural conditions is essential for improving waste management and promoting sustainable agriculture. In this study, corn straw (400 tons) and pig manure (200 tons) were composted with microbial inoculants. The thermophilic phase of composting lasted for fourteen weeks, resulting in an alkaline final product. Microbial systems with low-temperature initiation and high-temperature fermentation played a crucial role in enhancing lignocellulose degradation and humic substances (HS) formation. Adding microbes, including Rhodanobacter, Pseudomonas, and Planococcus, showed a positive correlation with degradation rates of cellulose, hemicellulose, and lignin. Bacillus, Planococcus, and Acinetobacter were positively correlated with HS formation. Microorganisms facilitated efficient hydrolysis of lignocelluloses, providing humic precursors to accelerate composting humification through phenolic protein and Maillard pathways. This study provides significant insights into large-scale composting under natural conditions, contributing to the advancement of waste management strategies and the promotion of sustainable agriculture.


Subject(s)
Composting , Manure , Zea mays , Composting/methods , Animals , Zea mays/chemistry , Lignin/metabolism , Humic Substances/analysis , Bacteria/metabolism , Cold Temperature , Temperature , Hydrolysis , Swine , Waste Products
13.
J Environ Manage ; 358: 120911, 2024 May.
Article in English | MEDLINE | ID: mdl-38631164

ABSTRACT

Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.


Subject(s)
Water Supply , Water Quality , Water Purification/methods , Humic Substances/analysis , Drinking Water/chemistry , Drinking Water/analysis , Carbon/analysis
14.
Sci Rep ; 14(1): 8493, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605135

ABSTRACT

This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.


Subject(s)
Charcoal , Charcoal/chemistry , Dissolved Organic Matter , Humic Substances/analysis , Spectrometry, Fluorescence/methods , Temperature
15.
Chemosphere ; 356: 141940, 2024 May.
Article in English | MEDLINE | ID: mdl-38588894

ABSTRACT

Dissolved black carbon (DBC) is the ubiquitous component of dissolved organic matter pools with the high reactivity for disinfection byproducts formation. However, it is unknown that the influence of molecular weight (MW) of natural organic matter (NOM) on the DBC removal from potable water sources. Therefore, it was studied that the DBC removal by coagulation in the presence of the NOM with various molecular weights. The DBC removal was promoted due to the presence of NOM and the promotion degree decreased with decreasing MW of NOM. Furthermore, the removal ratio of humic-like component increased as the MW of NOM decreased, suggesting that the competition between DBC and NOM increased with decreasing MW. The functional groups after coagulation were the same with that before coagulation as the MW of NOM varied, suggesting that the molecular structure was not the key factor of influencing the DBC removal. This study will give the deep insight into the prediction of the DBC removal ratio by coagulation based on the MW of NOM in water sources.


Subject(s)
Humic Substances , Molecular Weight , Water Purification , Water Purification/methods , Humic Substances/analysis , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Soot/chemistry , Drinking Water/chemistry , Disinfection , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification
16.
Environ Pollut ; 348: 123809, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38493869

ABSTRACT

Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.


Subject(s)
Phenanthrenes , Water Pollutants, Chemical , Microplastics , Humic Substances/analysis , Plastics/chemistry , Phenanthrenes/analysis , Polyethylene , Water Pollutants, Chemical/analysis , Adsorption
17.
Sci Total Environ ; 923: 171460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442764

ABSTRACT

This study investigated the impact of adding enzyme inducer (MnSO4) on humic substance (HS) formation during straw composting. The results demonstrated that both enzyme inducer treatment group (Mn) and functional microorganism treatment group (F) led to an increase in the content of HS compared to the treatment group without enzyme inducer and functional microorganism (CK). Interestingly, the enzyme inducer exhibited a higher promoting effect on HS (57.80 % ~ 58.58 %) than functional microbial (46.54 %). This was because enzyme inducer stimulated the growth of key microorganisms and changed the interaction relationship between microorganisms. The structural equation model suggested that the enzyme inducer promoted the utilization of amino acids by the fungus and facilitated the conversion of precursors to humic substance components. These findings provided a direction for improving the quality of composting products from agricultural straw waste. It also provided theoretical support for adding MnSO4 to compost.


Subject(s)
Composting , Oryza , Humic Substances/analysis , Soil , Amino Acids , Manure
18.
Sci Total Environ ; 923: 171548, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458466

ABSTRACT

The aim is to enhance lignin humification by promoting laccase activities which can promote lignin depolymerization and reaggregation during composting. 1-Hydroxybenzotriazole (HBT) is employed to conduct laccase mediator system (LMS), application of oxidized graphene (GO) in combination to strengthen LMS. Compared with control, the addition of GO, HBT, and GH (GO coupled with HBT) significantly improved laccase expression and activities (P < 0.05), with lignin humification efficiency also increased by 68.6 %, 36.7 %, and 107.8 %. GH treatment induces microbial expression of laccase by increasing the abundance and synergy of core microbes. The unsupervised learning model, vector autoregressive model and Mantel test function were combined to elucidate the mechanism of action of exogenous materials. The results showed that GO stabilized the composting environment on the one hand, and acted as a support vector to stabilize the LMS and promote the function of laccase on the other. In GH treatment, degradation of macromolecules and humification of small molecules were promoted simultaneously by activating the dual function of laccase. Additionally, it also reveals the GH enhances the humification of lignocellulosic compost by converting phenolic pollutants into aggregates. These findings provide a new way to enhance the dual function of laccase and promote lignin humification during composting. It could effectively achieve the resource utilization of organic solid waste and reduce composting pollution.


Subject(s)
Composting , Humic Substances , Humic Substances/analysis , Soil , Laccase/metabolism , Lignin/metabolism , Biomass , Manure
19.
Sci Total Environ ; 923: 171476, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458471

ABSTRACT

DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes. But the effective bioremediations obviously reduced the DOM concentration and thus mitigated the eutrophication outbreak risks in water bodies due to the increased MBC (microbial biomass carbon), microbial activity and metabolism. In early summer, the overall DOM in each treatment were readily low levels and derived from both autochthonous and exogenous origins, dominated by fulvic acid-like. In midsummer, the DOM contents and characteristics in each treatment increased significantly as phytoplankton activity improved, and the majority of DOM were humic acid-like and mainly of biological origin. The greatest differences of enzymes, MBC, microbial metabolism and DOM&SOM removal among different treatments were observed in summer months. In autumn, the systematic DOM&SOM slightly reduced due to the deceased microbial activity, in which the microbial humic acids were main component and derived from endogenous sources. Additionally, the gradually decreased SOM with cultivated time in each treatment was a result of microbiological conversion of SOM into DOM. For various treatments, BE, BE.A, BE.C and BE.E increased the MBC, enzymatic and microbial activities due to the application of biochar-supported EMs. Among these, BE and BE.A, especially BE.A with oxygen supplement, achieved the most desirable effect on reducing systematic DOM&SOM levels and increasing enzymatic and microbial activities. The group of EM also reduced the levels of DOM&SOM as improved degradation of EMs for DOM. However, BC, BE.C and BE.E finally did not achieved the desirable effect on reducing DOM&SOM due to the suppression of microbial activities, respectively, from high dose of biochar, weakening of dominant species and additional introduction of EMs in low liveness.


Subject(s)
Dissolved Organic Matter , Lakes , Lakes/chemistry , Seasons , Charcoal , Humic Substances/analysis
20.
Chemosphere ; 353: 141647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460843

ABSTRACT

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Subject(s)
Laccase , Oxides , Oxides/chemistry , Magnesium Oxide , Humic Substances/analysis , Hydroxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...