Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 13(7): e1006936, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28753627

ABSTRACT

Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients.


Subject(s)
Abnormalities, Multiple/genetics , Bardet-Biedl Syndrome/genetics , Group II Chaperonins/genetics , Heart Defects, Congenital/genetics , Hydrocolpos/genetics , Polydactyly/genetics , Transcription Factors/genetics , Uterine Diseases/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Active Transport, Cell Nucleus/genetics , Animals , Animals, Genetically Modified/genetics , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/pathology , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Cilia/metabolism , Cilia/pathology , Cytoplasm/metabolism , Disease Models, Animal , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Hydrocolpos/metabolism , Hydrocolpos/pathology , Mice , Mutation , Polydactyly/metabolism , Polydactyly/pathology , Protein Transport/genetics , Transcription Factors/biosynthesis , Uterine Diseases/metabolism , Uterine Diseases/pathology , Zebrafish/genetics
2.
Biochim Biophys Acta ; 1830(3): 2728-38, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23671934

ABSTRACT

BACKGROUND: Upstream open reading frames (uORFs) are commonly found in the 5'-untranslated region (UTR) of many genes and function in translational control. However, little is known about the existence of the proteins encoded by uORFs, and the role of the proteins except translational control. There was no report about uORFs of the McKusick-Kaufman syndrome (MKKS) gene that causes a genetic disorder. METHODS: Northern blotting, 3'-RACE, and bioinformatics were used for determining the length of transcripts and their 3' ends. Luciferase assay and in vitro translation were used for evaluation of translational regulatory activity of uORFs. Immunoblotting and immunocytochemical analyses were used for detection of uORF-derived protein products and their subcellular localization. RESULTS: The MKKS gene generates two types of transcripts: a canonical long transcript that encodes both uORFs and MKKS, and a short transcript that encodes only uORFs by using alternative polyadenylation sites at the 5'-UTR. The simultaneous disruption of the uORF initiation codons increased the translation of the downstream ORF. Furthermore, both protein products from the two longest uORFs were detected in the mitochondrial membrane fraction of HeLa cells. Database searches indicated that such uORFs with active alternative polyadenylation sites at the 5'-UTR are atypical but surely exist in human transcripts. CONCLUSIONS: Multiple uORFs at the 5'-UTR of the MKKS long transcript function as translational repressor for MKKS. Two uORFs are translated in vivo and imported onto the mitochondrial membrane. GENERAL SIGNIFICANCE: Our findings provide unique insights into production of uORF-derived peptides and functions of uORFs.


Subject(s)
5' Untranslated Regions , Abnormalities, Multiple/genetics , Alternative Splicing , Heart Defects, Congenital/genetics , Hydrocolpos/genetics , Mitochondrial Proteins/genetics , Open Reading Frames , Polydactyly/genetics , RNA, Messenger/genetics , Uterine Diseases/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Amino Acid Sequence , Animals , Cell Line, Tumor , Gene Library , Genes, Reporter , Haplorhini , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Hydrocolpos/metabolism , Hydrocolpos/pathology , Luciferases , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Polyadenylation , Polydactyly/metabolism , Polydactyly/pathology , Protein Biosynthesis , RNA, Messenger/metabolism , Rats , Sequence Alignment , Uterine Diseases/metabolism , Uterine Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...