Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.247
Filter
1.
Water Res ; 256: 121638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691899

ABSTRACT

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Subject(s)
Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
2.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702534

ABSTRACT

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Subject(s)
Colorimetry , Limit of Detection , Metal-Organic Frameworks , Pesticides , Porphyrins , Colorimetry/methods , Pesticides/analysis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Hydrogen Peroxide/chemistry , Oxidoreductases/chemistry , Aptamers, Nucleotide/chemistry
3.
PLoS One ; 19(5): e0302967, 2024.
Article in English | MEDLINE | ID: mdl-38722908

ABSTRACT

Ricin is a highly toxic protein, capable of inhibiting protein synthesis within cells, and is produced from the beans of the Ricinus communis (castor bean) plant. Numerous recent incidents involving ricin have occurred, many in the form of mailed letters resulting in both building and mail sorting facility contamination. The goal of this study was to assess the decontamination efficacy of several commercial off-the-shelf (COTS) cleaners and decontaminants (solutions of sodium hypochlorite [bleach], quaternary ammonium, sodium percarbonate, peracetic acid, and hydrogen peroxide) against a crude preparation of ricin toxin. The ricin was inoculated onto four common building materials (pine wood, drywall joint tape, countertop laminate, and industrial carpet), and the decontaminants were applied to the test coupons using a handheld sprayer. Decontamination efficacy was quantified using an in-vitro cytotoxicity assay to measure the quantity of bioactive ricin toxin extracted from test coupons as compared to the corresponding positive controls (not sprayed with decontaminant). Results showed that decontamination efficacy varied by decontaminant and substrate material, and that efficacy generally improved as the number of spray applications or contact time increased. The solutions of 0.45% peracetic acid and the 20,000-parts per million (ppm) sodium hypochlorite provided the overall best decontamination efficacy. The 0.45% peracetic acid solution achieved 97.8 to 99.8% reduction with a 30-min contact time.


Subject(s)
Decontamination , Ricin , Decontamination/methods , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Construction Materials , Peracetic Acid/pharmacology , Peracetic Acid/chemistry , Hydrogen Peroxide/chemistry , Animals , Disinfectants/pharmacology , Disinfectants/chemistry
4.
Anal Chim Acta ; 1307: 342627, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719406

ABSTRACT

BACKGROUND: Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) molecule involved in cell metabolism regulation, transcriptional regulation, and cytoskeleton remodeling. Real-time monitoring of H2O2 levels in live cells is of great significance for disease prevention and diagnosis. RESULTS: We utilized carbon cloth (CC) as the substrate material and employed a single-atom catalysis strategy to prepare a flexible self-supported sensing platform for the real-time detection of H2O2 secreted by live cells. By adjusting the coordination structure of single-atom sites through P and S doping, a cobalt single-atom nanoenzyme Co-NC/PS with excellent peroxidase-like activity was obtained. Furthermore, we explored the enzyme kinetics and possible catalytic mechanism of Co-NC/PS. Due to the excellent flexibility, high conductivity, strong adsorption performance of carbon cloth, and the introduction of non-metallic atom-doped active sites, the developed Co-NC/PS@CC exhibited ideal sensing performance. Experimental results showed that the linear response range for H2O2 was 1-17328 µM, with a detection limit (LOD) of 0.1687 µM. Additionally, the sensor demonstrated good reproducibility, repeatability, anti-interference, and stability. SIGNIFICANCE: The Co-NC/PS@CC prepared in this study has been successfully applied for detecting H2O2 secreted by MCF-7 live cells, expanding the application of single-atom nanoenzymes in live cell biosensing, with significant implications for health monitoring and clinical diagnostics.


Subject(s)
Cobalt , Electrochemical Techniques , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Cobalt/chemistry , Humans , Electrochemical Techniques/methods , MCF-7 Cells , Carbon/chemistry , Limit of Detection , Biosensing Techniques/methods
5.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699865

ABSTRACT

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Subject(s)
Hemin , Hydrogen Peroxide , Nitric Oxide , Hemin/chemistry , Nitric Oxide/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Molecular Probes/chemistry , Luminol/chemistry , Solutions , Luminescent Measurements , Peroxynitrous Acid/analysis , Peroxynitrous Acid/chemistry , Kinetics , Oxidation-Reduction
6.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
7.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
8.
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696990

ABSTRACT

Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.


Subject(s)
Carbon , Oxygen , Quantum Dots , Mice , Animals , Quantum Dots/chemistry , Carbon/chemistry , Humans , Catalysis , Oxygen/chemistry , Immunotherapy , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photochemotherapy , Mice, Inbred BALB C , Cell Line, Tumor , Iron/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Surface Properties , Cell Survival/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female
9.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669999

ABSTRACT

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Subject(s)
Doxorubicin , Hydrogen Peroxide , Oxygen , Photochemotherapy , Theranostic Nanomedicine , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Animals , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Oxygen/chemistry , Oxygen/metabolism , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Particle Size , Surface Properties , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Peroxides/chemistry , Peroxides/pharmacology , Nanoparticles/chemistry , Mice, Inbred BALB C , Zinc/chemistry , Zinc/pharmacology , Tumor Microenvironment/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
10.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640664

ABSTRACT

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Subject(s)
Antimony , Arsenic , Bacillus , Charcoal , Hydrogen Peroxide , Soil Microbiology , Soil Pollutants , Antimony/chemistry , Charcoal/chemistry , Arsenic/metabolism , Arsenic/chemistry , Soil Pollutants/metabolism , Bacillus/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Soil/chemistry , Iron/chemistry , Iron/metabolism , Biodegradation, Environmental
11.
Chemosphere ; 357: 141868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593957

ABSTRACT

Antibiotics, as a class of environmental pollutants, pose a significant challenge due to their persistent nature and resistance to easy degradation. This study delves into modeling and optimizing conventional Fenton degradation of antibiotic sulfamethoxazole (SMX) and total organic carbon (TOC) under varying levels of H2O2, Fe2+ concentration, pH, and temperature using statistical and artificial intelligence techniques including Multiple Regression Analysis (MRA), Support Vector Regression (SVR) and Artificial Neural Network (ANN). In statistical metrics, the ANN model demonstrated superior predictive accuracy compared to its counterparts, with lowest RMSE values of 0.986 and 1.173 for SMX and TOC removal, respectively. Sensitivity showcased H2O2/Fe2+ ratio, time and pH as pivotal for SMX degradation, while in simultaneous SMX and TOC reduction, fine tuning the time, pH, and temperature was essential. Leveraging a Hybrid Genetic Algorithm-Desirability Optimization approach, the trained ANN model revealed an optimal desirability of 0.941 out of 1000 solutions which yielded a 91.18% SMX degradation and 87.90% TOC removal under following specific conditions: treatment time of 48.5 min, Fe2+: 7.05 mg L-1, H2O2: 128.82 mg L-1, pH: 5.1, initial SMX: 97.6 mg L-1, and a temperature: 29.8 °C. LC/MS analysis reveals multiple intermediates with higher m/z (242, 270 and 288) and lower m/z (98, 108, 156 and 173) values identified, however no aliphatic hydrocarbon was isolated, because of the low mineralization performance of Fenton process. Furthermore, some inorganic fragments like NH4+ and NO3- were also determined in solution. This comprehensive research enriches AI modeling for intricate Fenton-based contaminant degradation, advancing sustainable antibiotic removal strategies.


Subject(s)
Anti-Bacterial Agents , Artificial Intelligence , Hydrogen Peroxide , Iron , Neural Networks, Computer , Sulfamethoxazole , Sulfamethoxazole/chemistry , Hydrogen Peroxide/chemistry , Anti-Bacterial Agents/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Temperature
12.
Int J Biol Macromol ; 267(Pt 1): 131444, 2024 May.
Article in English | MEDLINE | ID: mdl-38588840

ABSTRACT

Ramie bone (RB), an agricultural waste generated in the textile industry, is a vastly productive renewable natural resource with the potential to be used as a source of cellulose. In this study, ramie bone cellulose (RB-CE) was obtained in one step using a simple and ecologically friendly hydrogen peroxide-citric acid (HPCA) treatment procedure that avoided the use of halogenated reagents and strong acids while also streamlining the treatment processes. Various analytical methods were used to investigate the chemical composition and structure, crystallinity, morphology, thermal properties, surface area and hydration properties of cellulose separated at different treatment temperatures. HPCA successfully removed lignin and hemicellulose from RB, according to chemical composition analysis and FTIR. RB-CE had a type I cellulose crystal structure, and the crystallinity improved with increasing treatment temperature, reaching 72.51 % for RB-CE90. The RB-CE showed good thermal stability with degradation temperatures ranging from 294.2 °C to 319.1 °C. Furthermore, RB-CE had a high water/oil binding capacity, with RB-CE90 having WHC and OBC of 9.68 g/g and 7.24 g/g, respectively. The current work serves as a model for the environmentally friendly and convenient extraction of cellulose from biomass, and the cellulose obtained can be employed in the field of food and composite materials.


Subject(s)
Cellulose , Hydrogen Peroxide , Cellulose/chemistry , Hydrogen Peroxide/chemistry , Bone and Bones/chemistry , Green Chemistry Technology/methods , Animals , Temperature , Lignin/chemistry , Lignin/isolation & purification , Water/chemistry
13.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583202

ABSTRACT

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Subject(s)
Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
14.
ACS Appl Mater Interfaces ; 16(17): 22704-22714, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640487

ABSTRACT

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Enrofloxacin , Metal Nanoparticles , Platinum , Enrofloxacin/analysis , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Copper/chemistry , Platinum/chemistry , Ruthenium/chemistry , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Catalysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry
15.
Chemosphere ; 356: 141952, 2024 May.
Article in English | MEDLINE | ID: mdl-38599329

ABSTRACT

Photo-Fenton-like technology based on H2O2 is considered as an ideal strategy to generate reactive oxygen species (ROS) for antibiotic degradation, but O2 overflow in the process severely limits the utilization efficiency of H2O2. Herein, we fabricate Bi2MoO6 (BMO) photocatalyst modified with Frustrated Lewis pairs (FLPs) as a Fenton catalyst model for enhancing reuse of spilled O2. The FLPs created by the introduction of cerium and oxygen vacancy were found to contribute to regulate the electronic structure of BMO and further improve the acidic and basic properties of photocatalyst surface. More importantly, the frustrated acid and base sites can enhance the H2O2 and O2 interfacial adsorption process and provide an Ce4+-Ov-O2- active site on the surface of Ce-BMO nanosheets, which can promote O2/•O2-/1O2/H2O2 redox cycles to achieve high H2O2 utilization efficiency. Specifically, in the experiment using tetracycline as a photocatalytic degradation object, the degradation activity of Ce-BMO was 2.15 times higher than that of BMO pure phase. Quenching experiments and EPR assays also confirmed that 1O2 and •O2- were the dominant oxidative species. This study systematically reveals the design of Fenton photocatalytic active sites at the atomic scale and provides new insights into constructing FLPs photocatalysts with high H2O2 utilization efficiency.


Subject(s)
Bismuth , Cerium , Hydrogen Peroxide , Photolysis , Hydrogen Peroxide/chemistry , Bismuth/chemistry , Cerium/chemistry , Catalysis , Molybdenum/chemistry , Iron/chemistry , Reactive Oxygen Species/chemistry , Oxidation-Reduction , Oxygen/chemistry
16.
Chem Commun (Camb) ; 60(36): 4773-4776, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602162

ABSTRACT

A small-molecule Fenton reagent, integrating ferrocene with a carbonic anhydrase inhibitor, was designed to intelligently regulate intracellular acidosis for self-augmented chemodynamic therapy. Acidosis coupled with up-regulated ROS levels demonstrated potent cytotoxicity and effective tumor suppression.


Subject(s)
Ferrous Compounds , Hydrogen Peroxide , Iron , Metallocenes , Humans , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Iron/chemistry , Metallocenes/chemistry , Metallocenes/pharmacology , Reactive Oxygen Species/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Acidosis/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Mice
17.
Int J Biol Macromol ; 267(Pt 2): 131533, 2024 May.
Article in English | MEDLINE | ID: mdl-38608988

ABSTRACT

As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.


Subject(s)
Graphite , Hydrogen Peroxide , Lignin , Lignin/chemistry , Graphite/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Nanotubes/chemistry , Nitriles/chemistry , Azo Compounds/chemistry , Boron Compounds/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Nanotubes, Carbon/chemistry , Nitrogen Compounds
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124352, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38678841

ABSTRACT

Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.


Subject(s)
Manganese Compounds , Mucin-1 , Nanostructures , Oxides , Manganese Compounds/chemistry , Hydrogen-Ion Concentration , Mucin-1/analysis , Oxides/chemistry , Nanostructures/chemistry , Humans , Colorimetry/methods , Benzidines/chemistry , Pressure , Biosensing Techniques/methods , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Aptamers, Nucleotide/chemistry
19.
J Hazard Mater ; 470: 134258, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608588

ABSTRACT

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Subject(s)
Naproxen , Photolysis , Ultraviolet Rays , Water Pollutants, Chemical , Naproxen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Energy Transfer , Hydrogen Peroxide/chemistry , Peracetic Acid/chemistry , Photochemical Processes
20.
ACS Sens ; 9(4): 1820-1830, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38604805

ABSTRACT

Umami substances play a significant role in the evaluation of food quality, and their synergistic enhancement is of great importance in improving and intensifying food flavors and tastes. Current biosensors available for umami detection still confront challenges in simultaneous quantification of multiple umami substances and umami intensities. In this study, an innovative dual-channel magnetic relaxation switching taste biosensor (D-MRSTB) was developed for the quantitative detection of representative umami substances. The multienzyme signal of D-MRSTB specifically catalyzes the umami substances of interest to generate hydrogen peroxide (H2O2), which is then used to oxidate Fe2+ to Fe3+. Such a valence-state transition of paramagnetic ions was utilized as a magnetic relaxation signaling switch to influence the transverse magnetic relaxation time (T2) within the reaction milieu, thus achieving simultaneous detection of monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP). The biosensor showed good linearity (R2 > 0.99) in the concentration range of 50-1000 and 10-1000 µmol/L, with limits of detection (LOD) of 0.61 and 0.09 µmol/L for MSG and IMP, respectively. Furthermore, the biosensor accurately characterized the synergistic effect of the mixed solution of IMP and MSG, where ΔT2 showed a good linear relationship with the equivalent umami concentration (EUC) of the mixed solution (R2 = 0.998). Moreover, the D-MRSTB successfully achieved the quantitative detection of umami compounds in real samples. This sensing technology provides a powerful tool for achieving the detection of synergistic enhancement among umami compounds and demonstrates its potential for application in the food industry.


Subject(s)
Biosensing Techniques , Sodium Glutamate , Taste , Biosensing Techniques/methods , Sodium Glutamate/chemistry , Inosine Monophosphate/analysis , Inosine Monophosphate/chemistry , Limit of Detection , Food Analysis/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Magnetic Phenomena , Flavoring Agents/analysis , Flavoring Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...