Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.233
Filter
1.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724835

ABSTRACT

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Subject(s)
Docetaxel , Metal Nanoparticles , Prostatic Neoplasms , Radiation-Sensitizing Agents , Silver , Humans , Docetaxel/pharmacology , Male , Silver/pharmacology , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Caspase 3/metabolism , Caspase 3/genetics , Antineoplastic Agents/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Cadherins/metabolism , Cadherins/genetics
2.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
3.
Arch Microbiol ; 206(6): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767668

ABSTRACT

Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.


Subject(s)
Antifungal Agents , Candida tropicalis , Carbon , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Oxidative Stress , Candida tropicalis/drug effects , Candida tropicalis/physiology , Antifungal Agents/pharmacology , Humans , Fluconazole/pharmacology , Carbon/metabolism , Candidiasis/microbiology , Osmotic Pressure , Glucose/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fructose/metabolism , Fructose/pharmacology , Stress, Physiological
4.
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696990

ABSTRACT

Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.


Subject(s)
Carbon , Oxygen , Quantum Dots , Mice , Animals , Quantum Dots/chemistry , Carbon/chemistry , Humans , Catalysis , Oxygen/chemistry , Immunotherapy , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photochemotherapy , Mice, Inbred BALB C , Cell Line, Tumor , Iron/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Surface Properties , Cell Survival/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female
5.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38757300

ABSTRACT

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer­associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7­tetrahydroxyflavone) against hydrogen peroxide (H2O2)­generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2­induced damages, cell viability, sub­G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2­ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell­free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79­4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2­treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2­mediated apoptosis. Luteolin suppressed active caspase­9 and caspase­3 levels while increasing Bcl­2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase­1. Overall, these results indicated that luteolin inhibits H2O2­mediated cellular damage by upregulating antioxidant enzymes.


Subject(s)
Antioxidants , Apoptosis , Cell Survival , Fibroblasts , Hydrogen Peroxide , Luteolin , Oxidative Stress , Reactive Oxygen Species , Luteolin/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Line , Cricetinae , Lipid Peroxidation/drug effects , Cricetulus
6.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38696307

ABSTRACT

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Subject(s)
Cellular Senescence , Hydrogen Peroxide , Oxidative Stress , Water , Humans , Cellular Senescence/drug effects , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Cell Line, Tumor , Fibroblasts/drug effects , Fibroblasts/metabolism , Senescence-Associated Secretory Phenotype/drug effects , Reactive Oxygen Species/metabolism , Female , Electrolysis
7.
Am J Dent ; 37(2): 78-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704850

ABSTRACT

PURPOSE: To evaluate how fluoride- or chitosan-based toothpaste used during at-home bleaching affects enamel roughness, tooth color, and staining susceptibility. METHODS: Bovine enamel blocks were submitted to a 14-day cycling regime considering a factorial design (bleaching agent x toothpaste, 2 x 3), with n=10: (1) bleaching with 16% carbamide peroxide (CP) or 6% hydrogen peroxide (HP), and (2) daily exposure of a fluoride (1,450 ppm F-NaF) toothpaste (FT), chitosan-based toothpaste (CBT), or distilled water (control). Then, 24 hours after the last day of bleaching procedure the samples were exposed to a coffee solution. Color (ΔEab, ΔE00, L*, a*, b*) and roughness (Ra, µm) analyses were performed to compare the samples initially (baseline), after bleaching, and after coffee staining. The results were evaluated by linear models for repeated measures (L*, a*, b*, and Ra), 2-way ANOVA (ΔEab, ΔE00) and Tukey's test (α= 0.05). RESULTS: After the at-home bleaching procedure (toothpaste vs. time, P< 0.0001), the toothpaste groups presented a statistically lower Ra than the control (CBT 0.05). After coffee exposure, CBT presented lower ΔEab and ΔE00 values in the HP groups (toothpaste, P< 0.0001), and lower b* and a* values in the CP groups (toothpaste vs. time, P= 0.004). CLINICAL SIGNIFICANCE: Fluoride or chitosan delivered by toothpaste can reduce surface alterations of the enamel during at-home bleaching, without affecting bleaching efficacy.


Subject(s)
Carbamide Peroxide , Chitosan , Dental Enamel , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Toothpastes , Chitosan/pharmacology , Toothpastes/pharmacology , Animals , Cattle , Tooth Bleaching/methods , Dental Enamel/drug effects , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide/pharmacology , Carbamide Peroxide/pharmacology , Surface Properties , Fluorides/pharmacology , Color , Urea/analogs & derivatives , Urea/pharmacology , Coffee , Peroxides/pharmacology
8.
PLoS One ; 19(5): e0303136, 2024.
Article in English | MEDLINE | ID: mdl-38743689

ABSTRACT

Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.


Subject(s)
Macrophages , Neuroprotective Agents , Reactive Oxygen Species , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Mice , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Humans , Neuroprotective Agents/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Neuroblastoma/immunology , Neuroblastoma/pathology , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Antioxidants/pharmacology
9.
Cells ; 13(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727311

ABSTRACT

Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/ß-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.


Subject(s)
Glaucoma , Glutamic Acid , Hydrogen Peroxide , Oxidative Stress , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/drug therapy , Oxidative Stress/drug effects , Animals , Hydrogen Peroxide/pharmacology , Glutamic Acid/metabolism , Cell Survival/drug effects , Rats , Cell Line , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Signal Transduction/drug effects , Models, Biological , Humans
10.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568774

ABSTRACT

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Subject(s)
Methionine Sulfoxide Reductases , Oryza , Rhizoctonia , Oryza/microbiology , Methionine , Hydrogen Peroxide/pharmacology , Racemethionine/pharmacology , Plant Diseases/microbiology
11.
Reprod Domest Anim ; 59(4): e14554, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566374

ABSTRACT

High sperm cryotolerance is crucial to the successful cryopreservation of boar sperm. Evaluating the cryotolerance of boar sperm by using a rapid and convenient technique can enhance the commercial viability of these sperm. This study investigated the correlation between sperm parameters for three sample subsets-fresh sperm, sperm with H2O2-induced oxidative damage (hereinafter referred to as H2O2-induced sperm), and frozen-thawed sperm-to identify the potential of these correlations to predict cryotolerance. A total of 64 sperm samples were obtained from 64 Duroc boars. The sperm parameters of the three subsets, where the frozen-thawed sperm were analysed at 30 or 180 min after thawing, were determined, and the coefficients of correlation between these parameters were calculated. The results indicated that H2O2-induced oxidative stress resulted in decreases in various sperm parameters-including total motility (TM), viability (VIA), mitochondrial membrane potential (MMP), and live sperm with MMP (LMP)-but increased their coefficients of variation. Receiver operating characteristic (ROC) curve analysis revealed that the kinematic parameters of the H2O2-induced sperm effectively predicted those of the frozen-thawed boar sperm at 30 min after thawing; the corresponding area under the ROC curve (AUC) was 0.8667 for TM and 0.8733 for progressive motility in the H2O2-induced sperm. For measurement at 180 min after thawing, the sperm membrane and mitochondrial parameters of the H2O2-induced sperm effectively predicted the LMP of the frozen-thawed boar sperm; the corresponding AUC was 0.8489 for VIA, 0.8289 for MMP, and 0.8444 for LMP. To our knowledge, this is the first study to directly establish a strong correlation between post-thaw boar sperm quality and H2O2-induced oxidative stress before freezing. Our proposed technique can serve as a valuable reference for the development of practical applications aimed at enhancing techniques for cryopreserving boar sperm.


Subject(s)
Antioxidants , Semen Preservation , Swine , Male , Animals , Antioxidants/pharmacology , Semen , Hydrogen Peroxide/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa , Cryopreservation/veterinary , Cryopreservation/methods , Sperm Motility
12.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564737

ABSTRACT

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Subject(s)
Anti-Infective Agents , Chitosan , Gallic Acid/analogs & derivatives , Staphylococcal Infections , Humans , Staphylococcus aureus , Chitosan/chemistry , Hydrogen Peroxide/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Wound Healing , Escherichia coli , Biofilms
13.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675559

ABSTRACT

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Subject(s)
Apoptosis , Osteoblasts , Osteoclasts , RANK Ligand , Rhodophyta , Animals , Humans , Mice , Apoptosis/drug effects , Cell Differentiation/drug effects , Ethanol/chemistry , Hydrogen Peroxide/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , RANK Ligand/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Rhodophyta/chemistry
14.
Cell Signal ; 119: 111181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643946

ABSTRACT

Prohibitin (PHB) is a pleiotropic molecule with a variety of known functions and subcellular locations. PHB's function in breast cancer is poorly understood. Herein, we report that PHB is expressed in cancer types of diverse origin including breast cancer. The cancer patients with changes in PHB were reported to have significantly reduced 'overall survival' in comparison to the cases without alterations in PHB. The expression of PHB was increased by H2O2 and also by Moringin (MG), which is an isothiocyanate derived from the seeds of Moringa oleifera. MG interacted with PHB, DRP1, and SLP2 and inhibited the growth of MCF-7 and MDAMB-231 cells. The isothiocyanate triggered apoptosis in breast cancer cells as revealed by AO/PI assay, phosphatidylserine externalization, cell cycle analysis and DAPI staining. MG induced proapoptotic proteins expression such as cytochrome c, p53, and cleaved caspase-7. Further, cell survival proteins such as survivin, Bcl-2, and Bcl-xL were suppressed. A depolarization of membrane potential suggested that the apoptosis was triggered through mitochondria. The isothiocyanate suppressed the cancer cell migration and interacted with NF-κB subunits. MG suppressed p65 nuclear translocation induced by TNF-α. The reactive oxygen species generation was also induced by the isothiocyanate in breast cancer cells. MG also modulated the expression of lncRNAs. Collectively, the functions of PHB in breast cancer growth is evident from this study. The activities of MG against breast cancer might result from its ability to modulate multiple cancer-related targets.


Subject(s)
Apoptosis , Breast Neoplasms , Isothiocyanates , Prohibitins , Signal Transduction , Humans , Isothiocyanates/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Apoptosis/drug effects , Signal Transduction/drug effects , Repressor Proteins/metabolism , Cell Line, Tumor , MCF-7 Cells , Cell Movement/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , NF-kappa B/metabolism , Cell Proliferation/drug effects
15.
J Colloid Interface Sci ; 667: 491-502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653070

ABSTRACT

An injectable hydrogel dressing, Zr/Fc-MOF@CuO2@FH, was constructed by combing acid-triggered chemodynamic treatment (CDT) with low-temperature photothermal treatment (LT-PTT) to effectively eliminate bacteria without harming the surrounding normal tissues. The Zr/Fc-MOF acts as both photothermal reagent and nanozyme to generate reactive oxygen species (ROS). The CuO2 nanolayer can be decomposed by the acidic microenvironment of the bacterial infection to release Cu2+ and H2O2, which not only induces Fenton-like reaction but also enhances the catalytic capability of the Zr/Fc-MOF. The generated heat augments ROS production, resulting in highly efficient bacterial elimination at low temperature. Precisely, injectable hydrogel dressing can match irregular wound sites, which shortens the distance of heat dissipation and ROS diffusion to bacteria, thus improving sterilization efficacy and decreasing non-specific systemic toxicity. Both in vitro and in vivo experiments validated the predominant sterilization efficiency of drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC), presenting great potential for application in clinical therapy.


Subject(s)
Anti-Bacterial Agents , Copper , Photothermal Therapy , Reactive Oxygen Species , Catalysis , Copper/chemistry , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Animals , Mice , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Zirconium/chemistry , Zirconium/pharmacology , Cold Temperature , Microbial Sensitivity Tests , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/chemistry , Particle Size , Surface Properties , Hydrogels/chemistry , Hydrogels/pharmacology
16.
ACS Appl Mater Interfaces ; 16(19): 24172-24190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688027

ABSTRACT

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.


Subject(s)
Copper , Hydrogen Peroxide , Ruthenium , Tumor Microenvironment , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Animals , Mice , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peroxides/chemistry , Peroxides/pharmacology , Cell Line, Tumor , Photochemotherapy , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/pathology
17.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38663003

ABSTRACT

Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated ß-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.


Subject(s)
Cell Proliferation , Cellular Senescence , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , MicroRNAs , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cellular Senescence/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Signal Transduction/drug effects
18.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38637117

ABSTRACT

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Subject(s)
Cellular Senescence , Coculture Techniques , Epithelial Cells , Gene Expression Profiling , Mesenchymal Stem Cells , MicroRNAs , Oncogene Proteins , Thymus Gland , Umbilical Cord , Mesenchymal Stem Cells/metabolism , Humans , Epithelial Cells/metabolism , Umbilical Cord/cytology , Thymus Gland/cytology , Thymus Gland/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin E/metabolism , Cyclin E/genetics , Biomarkers/metabolism , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics
19.
Mol Immunol ; 170: 76-87, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640818

ABSTRACT

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Subject(s)
Hemocytes , Hydrogen Peroxide , Moths , Oxidative Stress , Peroxiredoxins , Animals , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Peroxiredoxins/immunology , Moths/immunology , Moths/genetics , Oxidative Stress/genetics , Hydrogen Peroxide/pharmacology , Hemocytes/metabolism , Hemocytes/immunology , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Antioxidants/metabolism , Amino Acid Sequence , DNA Damage
20.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675608

ABSTRACT

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Subject(s)
Apoptosis , Artemisinins , Cell Survival , Histones , Hydrogen Peroxide , Lysine , Oxidative Stress , Retinal Pigment Epithelium , Humans , Histones/metabolism , Apoptosis/drug effects , Acetylation/drug effects , Hydrogen Peroxide/pharmacology , Artemisinins/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Lysine/metabolism , Cell Survival/drug effects , Oxidative Stress/drug effects , Cell Line , Cytoprotection/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...