Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.251
Filter
1.
J Agric Food Chem ; 72(19): 11051-11061, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698723

ABSTRACT

Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.


Subject(s)
Copper , Odorants , Sulfhydryl Compounds , Wine , Wine/analysis , Odorants/analysis , Sulfhydryl Compounds/analysis , Humans , Copper/analysis , Chromatography, Gas/methods , Taste , Hydrogen Sulfide/analysis , Female , Male , Adult , Oxidation-Reduction , Middle Aged , Smell , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
2.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693877

ABSTRACT

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Subject(s)
Optical Imaging , Quantum Dots , Silver Compounds , Quantum Dots/chemistry , Silver Compounds/chemistry , Humans , Animals , Mice , Infrared Rays , Theranostic Nanomedicine , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration
3.
Planta ; 259(6): 142, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702456

ABSTRACT

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Hydrogen Sulfide , Phospholipase D , Plant Stomata , Arabidopsis/genetics , Arabidopsis/physiology , Plant Stomata/physiology , Plant Stomata/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Proline/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Lipid Peroxidation
4.
Head Face Med ; 20(1): 32, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750491

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) directly affects oral health. Yet data about halitosis in young CKD patients and the impact of dental prophylaxis is limited. Therefore, as part of this randomized clinical trial, halitosis in young CKD patients undergoing intensive or standard oral preventive procedures was to be explored. METHODS: Three volatile sulfur compounds (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were measured in 30 young patients with CKD (mean age 14.2 years; 16 males, 14 females). Breath samples were taken after 3 and 6 months and analyzed with selective gas chromatography (OralChroma). Tongue coating (Winkel Index) and clinical indices to determine local inflammation or oral hygiene (Papillary Bleeding Index and Quigley-Hein Index) were assessed. Within an extended anamnesis, patients and their mothers and nurses were questioned about the perceived halitosis. Corresponding quotes were noted verbatim. Patients were randomized to either intensive need-related oral health care measures (oral preventative program, OPP) or a one-stage standard prevention (treatment as usual, TAU). RESULTS: While there were no differences in volatile sulfur compound levels between TAU and OPP at the three time points of measurements (p > 0.05), there was a tendency towards a reduction in dimethyl sulfide and hydrogen sulfide of affected patients within the OPP group over time. Looking at potential differences between both groups with regard to tongue coating, significant differences were observed between baseline and 3 months after study start in the OPP group, and between baseline and 6 months after study start in the TAU group (p < 0.05). The burden of halitosis was frequently reported by patients' mothers and nurses. CONCLUSIONS: Young CKD patients regularly suffered from halitosis and dimethyl sulfide was its main source. Preventive measures mainly resulted in a reduction of tongue coating. TRIAL REGISTRATION: The German Clinical Trial Register (# DRKS00010580).


Subject(s)
Halitosis , Renal Insufficiency, Chronic , Humans , Halitosis/etiology , Halitosis/prevention & control , Female , Male , Adolescent , Renal Insufficiency, Chronic/complications , Breath Tests/methods , Child , Oral Hygiene , Sulfur Compounds/analysis , Chromatography, Gas/methods , Hydrogen Sulfide
5.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760671

ABSTRACT

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Subject(s)
Helianthus , Hydrogen Sulfide , Osmoregulation , Photosynthesis , Salt Stress , Seedlings , Helianthus/physiology , Helianthus/drug effects , Helianthus/growth & development , Helianthus/metabolism , Photosynthesis/drug effects , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Hydrogen Sulfide/metabolism , Chloroplasts/metabolism , Salinity
6.
Sci Rep ; 14(1): 10124, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698114

ABSTRACT

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Subject(s)
Copper , Fermentation , Hydrogen Sulfide , Metallothionein , Odorants , Saccharomyces cerevisiae , Vitis , Wine , Wine/analysis , Copper/metabolism , Vitis/microbiology , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Odorants/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfites/pharmacology , Pest Control/methods
7.
PLoS One ; 19(4): e0300261, 2024.
Article in English | MEDLINE | ID: mdl-38568919

ABSTRACT

Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.


Subject(s)
Hydrogen Sulfide , Rats , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Cell Line , Doxorubicin/toxicity , Myocytes, Cardiac/metabolism , Oxidative Stress , Mitochondria/metabolism , Apoptosis
8.
Physiol Plant ; 176(2): e14291, 2024.
Article in English | MEDLINE | ID: mdl-38628053

ABSTRACT

Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.


Subject(s)
Hydrogen Sulfide , Persea , Persea/genetics , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Gene Expression Profiling , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant
9.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643323

ABSTRACT

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Subject(s)
Curcumin , Hydrogen Sulfide , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Curcumin/pharmacology , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , RNA , Oxygen/metabolism , Methyltransferases/metabolism , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
10.
Microbiol Res ; 284: 127725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663233

ABSTRACT

Increasing studies have focused on the relationship between Desulfovibrio bacteria (DSV) and host health in recent years. However, little is known about the mechanisms by which DSV affects host health and the strategies to accurately regulate DSV numbers. This review mainly presents the relationship between DSV and host health, potential modulatory strategies, and the potential mechanisms affecting host health. Evidence suggests that DSV can both promote host health and induce the occurrence and development of disease, and these effects are closely related to its metabolites (e.g., H2S and short-chain fatty acids) and biofilm. DSV abundance in the intestine is influenced by probiotics, prebiotics, diet, lifestyle, and drugs.


Subject(s)
Biofilms , Desulfovibrio , Gastrointestinal Microbiome , Probiotics , Desulfovibrio/metabolism , Desulfovibrio/physiology , Humans , Gastrointestinal Microbiome/physiology , Biofilms/growth & development , Intestines/microbiology , Prebiotics , Animals , Fatty Acids, Volatile/metabolism , Hydrogen Sulfide/metabolism , Diet
11.
Microbiol Res ; 284: 127735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678681

ABSTRACT

The production of endogenous hydrogen sulfide (H2S) is an important phenotype of bacteria. H2S plays an important role in bacterial resistance to ROS and antibiotics, which significantly contributes to bacterial pathogenicity. Edwardsiella piscicida, the Gram-negative pathogen causing fish edwardsiellosis, has been documented to produce hydrogen sulfide. In the study, we revealed that Ferric uptake regulator (Fur) controlled H2S synthesis by activating the expression of phsABC operon. Besides, Fur participated in the bacterial defense against ROS and cationic antimicrobial peptides and modulated T3SS expression. Furthermore, the disruption of fur exhibited a significant in vivo colonization defect. Collectively, our study demonstrated the regulation of Fur in H2S synthesis, stress response, and virulence, providing a new perspective for better understanding the pathogenesis of Edwardsiella.


Subject(s)
Bacterial Proteins , Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Gene Expression Regulation, Bacterial , Hydrogen Sulfide , Stress, Physiological , Edwardsiella/genetics , Edwardsiella/pathogenicity , Hydrogen Sulfide/metabolism , Animals , Virulence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Reactive Oxygen Species/metabolism , Operon , Antimicrobial Cationic Peptides/pharmacology , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Zebrafish/microbiology
12.
Environ Sci Pollut Res Int ; 31(21): 30273-30287, 2024 May.
Article in English | MEDLINE | ID: mdl-38613761

ABSTRACT

Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 µM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.


Subject(s)
Cadmium , Hydrogen Sulfide , Plants , Cadmium/toxicity , Plants/drug effects , Soil Pollutants/toxicity
13.
Sci Rep ; 14(1): 9364, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654065

ABSTRACT

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Subject(s)
Catalytic Domain , Cystathionine gamma-Lyase , Hydrogen Sulfide , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Cystathionine gamma-Lyase/metabolism , Cystathionine gamma-Lyase/chemistry , Crystallography, X-Ray , Substrate Specificity , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Models, Molecular , Cysteine/metabolism , Cysteine/chemistry , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Homocysteine/metabolism , Homocysteine/chemistry , Catalysis
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124341, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38676987

ABSTRACT

Hydrogen sulfide (H2S) is a common toxic gas that threatens the quality and safety of environmental water and food. Herein, a new near-infrared fluorescent probe DTCM was synthesized and characterized by single crystal X-ray diffraction for sensing H2S. It exhibited a remarkable "turn-on" near-infrared (NIR) emission response at 665 nm with a remarkably massive Stokes shift of 175 nm, super-rapid detection ability (within 30 s), excellent photostability, high selectivity and sensitivity (limit of detection, LOD = 58 nM). Additionally, the probe was successfully utilized for the detection of H2S in environmental water samples. The DTCM-loaded test papers enabled convenient and real-time monitoring of H2S produced by food spoilage.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Limit of Detection , Spectrometry, Fluorescence , Water , Hydrogen Sulfide/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Water/chemistry , Food Contamination/analysis , Spectroscopy, Near-Infrared/methods , Food Analysis/methods , Water Pollutants, Chemical/analysis
15.
Anal Chem ; 96(19): 7342-7347, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38683890

ABSTRACT

Photoacoustic (PA) tomography has shown many promising aspects in noninvasive and precise imaging of deep-localized biomarkers. However, these traditional single-locked PA probes always face challenges in precise PA imaging with high specificity. Here, we report a novel AND-gate photoacoustic probe, BAE, to improve tumor imaging accuracy via the combination of two tumor-associated biomarkers, cysteine (Cys) and hydrogen sulfide (H2S). Only when Cys and H2S are concurrently introduced into the detection system does the absorption of BAE red-shift from the initial 680 to 810 nm, thereby showing a 5.29-fold enhancement in its PA signal at 810 nm. The good specificity of BAE is proven, since an obvious PA signal could be observed only in the solution containing both Cys and H2S and was not affected by other reactive sulfur species. After being taken up by tumors with the assistance of a nanomicelle, the AND-gate PA probe BAE was applied for dynamic real-time monitoring of Cys and H2S in vivo, achieving precise identification of tumors. This AND-gate PA probe provides a potential technical tool for precise sensing analysis of deep-seated diseases.


Subject(s)
Cysteine , Hydrogen Sulfide , Photoacoustic Techniques , Hydrogen Sulfide/analysis , Photoacoustic Techniques/methods , Cysteine/analysis , Cysteine/chemistry , Animals , Humans , Mice , Neoplasms/diagnostic imaging , Mice, Nude , Mice, Inbred BALB C
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38688210

ABSTRACT

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Subject(s)
Coumarins , Fluorescent Dyes , Hydrogen Sulfide , Phenothiazines , Zebrafish , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Coumarins/chemistry , Coumarins/chemical synthesis , Hydrogen Sulfide/analysis , Mice , Spectrometry, Fluorescence/methods , Humans
17.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673925

ABSTRACT

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Subject(s)
Endothelial Cells , Hydrogen Sulfide , Vascular Endothelial Growth Factor Receptor-2 , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Rats, Sprague-Dawley , Cell Hypoxia , Cell Proliferation/drug effects , Tyrosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/metabolism , Serine/metabolism , Hypoxia/metabolism
18.
Chemosphere ; 358: 142140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688348

ABSTRACT

Carbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600 °C, 800 °C and 1000 °C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/Fe3O4, surrounded by a well-defined graphite shell. Temperatures above 800 °C are needed to promote the graphitization of the carbonaceous species, a process promoted by iron nanoparticles through the dissolution, diffusion and growth of the carbon nanostructures on the outer shell. Breakthrough column tests show that CE-nFe exhibit an exceptional performance for H2S removal with a breakthrough capacity larger than 0.5-0.6 g H2S/gcatalyst after 3 days experiment. Experimental results anticipate the crucial role of humidity and oxygen in the adsorption/catalytic performance. Compared to some commercial samples, these results constitute a three-fold increase in the catalytic performance under similar experimental conditions.


Subject(s)
Carbon , Hydrogen Sulfide , Industrial Waste , Carbon/chemistry , Industrial Waste/analysis , Hydrogen Sulfide/chemistry , Adsorption , Catalysis , Iron/chemistry , Wastewater/chemistry , Nanoparticles/chemistry , Ferric Compounds/chemistry
19.
Commun Biol ; 7(1): 466, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632386

ABSTRACT

Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.


Subject(s)
Hydrogen Sulfide , Reishi , Cellulose/metabolism , Reishi/genetics , Carbon/metabolism , Signal Transduction , Hydrogen Sulfide/metabolism
20.
Sci Rep ; 14(1): 9308, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654035

ABSTRACT

Over the recent years, ever-increasing population growth and higher wastewater production has been a challenge for decentralized wastewater treatment plants (WWTPs). In addition, sludge treatment due to high cost for equipment and place make authorities to find a sustainable approach in both of economical and technical perspectives. One of the proposed solutions is transferring the sludge produced from decentralized WWTP to centralized WWTP. However, the appropriate proportional ratio of raw sludge to raw sewage is a challenge, otherwise, it make anaerobic conditions and sewage rotting along the sewer network based on permissible limit of dihydrogen sulfide (H2S) gas (5 ppm). In the present study, seven reactors with different ratios of sludge to raw sewage (0, 15, 20, 25, 50, 75, 100) were used to stimulate the feasibility of transferring Shahrake Gharb WWTP sludge along the wastewater transfer pipe to the centralized sewage treatment south Tehran WWTP plant in Tehran, Iran. The septic situation and H2S emission of different reactors within 7 h (Time to reach the compound in the south treatment plant) was analyzed by gas meter. The results indicated that the optimum ratio of sludge to raw sewage was 15% without H2S production during 7 h. In addition, due to the high volume of sludge produced by the Shahrake Gharb WWTP, the optimal ratio of lime to total solids (TS) in sludge (gr/gr) (0.6) increased the sludge loading rate from 15 to 30% without any H2S emission during the stimulation study period. Therefore, the lime stabilization and transfer of sludge from a decentralized WWTP to a centralized WWTP is a feasible way to manage the sludge and enhance the treatment capacity in local WWTP.


Subject(s)
Sewage , Waste Disposal, Fluid , Wastewater , Iran , Waste Disposal, Fluid/methods , Hydrogen Sulfide/analysis , Feasibility Studies , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...