Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 985
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000394

ABSTRACT

A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone ß-carbon with the furanyl moiety and structural modification of the α,ß-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.


Subject(s)
Antineoplastic Agents , Hydroquinones , Molecular Docking Simulation , Pyrazoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Hydroquinones/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemical synthesis , MCF-7 Cells , Cell Proliferation/drug effects , Chalcone/chemistry , Chalcone/pharmacology , HT29 Cells , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Structure-Activity Relationship , Cell Line, Tumor , Animals
2.
Bull Exp Biol Med ; 177(1): 68-73, 2024 May.
Article in English | MEDLINE | ID: mdl-38955855

ABSTRACT

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.


Subject(s)
Arginase , Arginine , Humic Substances , Macrophages, Peritoneal , Silver , Animals , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Arginine/pharmacology , Arginine/chemistry , Arginase/metabolism , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/chemistry
3.
Chem Pharm Bull (Tokyo) ; 72(6): 566-569, 2024.
Article in English | MEDLINE | ID: mdl-38897954

ABSTRACT

Dihydrobenzofuran is an important skeleton for bioactive compounds and natural products. Hydroquinones can be easily modified into substituted hydroquinones, which effectively undergo oxidation to produce the corresponding benzoquinone derivatives. Benzoquinones are reactive electrophiles that are frequently utilized in coupling with olefins to dihydrobenzofurans. Herein, we report the one-pot oxidative coupling of hydroquinones bearing an electron-withdrawing group at the C2 position with olefins to dihydrobenzofurans in the presence of the Lewis acidic FeCl3 and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) oxidant. Furthermore, this method was applied to the oxidative coupling of N-electron-withdrawing group-substituted 4-aminophenol.


Subject(s)
Alkenes , Benzofurans , Hydroquinones , Hydroquinones/chemistry , Hydroquinones/chemical synthesis , Benzofurans/chemistry , Benzofurans/chemical synthesis , Alkenes/chemistry , Molecular Structure , Oxidative Coupling , Ferric Compounds/chemistry , Oxidation-Reduction , Chlorides/chemistry , Benzoquinones/chemistry , Benzoquinones/chemical synthesis
4.
Colloids Surf B Biointerfaces ; 239: 113962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749167

ABSTRACT

The undesirable and inevitable adhesion of marine organisms on submerged surfaces has seriously affect the environment, economy and society, so emerging and promising strategies for antifouling are required. Here, the novel and environmental strategy of the antibacterial and antialgal materials was proposed for the application of the antifouling coating without releasing harmful substances. The environment-friendly antifouling agent, the capsaicin derivative N-(2,5-dihydroxy-4-acrylamide meth-ylbenzyl)acrylamide (PHABA), was modified to the molecular chain of the polyurethane. The best tensile strength was up to 23.5 MPa of PUP-25% and the elongation at break was 415% of PUP-25%. The excellent wear resistance (300 wear cycles) and chemical solution resistance (H2SO4, NaOH, and NaCl solutions) revealed the applicability of the coating. PHABA would migrate to the surface of the polyurethane coating with time and enhanced the antibacterial and antialgal properties of the coating. PUP-25% prevented more than 90% of bacterial and algal adhesion, indicating the potential application of the antifouling coating.


Subject(s)
Anti-Bacterial Agents , Polyurethanes , Surface Properties , Polyurethanes/chemistry , Polyurethanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydroquinones/chemistry , Hydroquinones/pharmacology , Microbial Sensitivity Tests , Bacterial Adhesion/drug effects , Biofouling/prevention & control , Acrylamide/chemistry , Acrylamide/pharmacology , Tensile Strength
5.
J Pharm Biomed Anal ; 246: 116223, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763108

ABSTRACT

The utilization of Hydroquinone (HQ) in over-the-counter skincare items is subject to restrictions. Consequently, Arbutin (AR) serves as a reliable alternative for addressing hyperpigmentation in non-prescription topical formulations. Nevertheless, AR undergoes decomposition into HQ and p-Benzoquinone (BZ) when exposed to temperature stress, ultraviolet light, or dilution in an acidic environment, all of which can induce skin toxicity. The intention of this paper is to investigate the effect of extraction procedure on the conversion of AR to HQ and or BZ and to evaluate kinetics of AR hydrolysis to HQ. Meanwhile this study aims to evaluate AR and BZ interference with the United States Pharmacopoeia (USP) identification and assessment method for HQ Hydrolytic stress during extraction conditions underwent optimization through systematic screening tests. Subsequent assessment of the residual drug and its degradation products were achieved by HPLC method. The resulting data were meticulously fitted to various kinetic models. To analyze the potential interference of AR in HQ measurement using USP method, the standard concentrations of AR and HQ were analyzed through UV-VIS spectrophotometry. For enhanced certainty, a validated HPLC method analysis was also conducted. Notably, the acid hydrolysis of AR exhibited independence from its initial concentration. So, the hydrolytic degradation of AR exhibited a Zero-order kinetic profile. Furthermore, the proven interference of AR in the UV-VIS spectrophotometry method was identified within the context of the USP method. This study successfully utilized an adopted HPLC method for the concurrent quantification of AR, HQ, and BZ. The potential interference of AR in the UV-VIS spectrophotometric assay for HQ may lead to false results especially for regulatory purposes.


Subject(s)
Arbutin , Benzoquinones , Hydroquinones , Hyperpigmentation , Arbutin/analysis , Arbutin/chemistry , Hydroquinones/analysis , Hydroquinones/chemistry , Benzoquinones/chemistry , Benzoquinones/analysis , Chromatography, High Pressure Liquid/methods , Hydrolysis , Skin Lightening Preparations/chemistry , Skin Lightening Preparations/analysis , Kinetics , Administration, Topical , Spectrophotometry, Ultraviolet/methods
6.
Food Chem ; 452: 139548, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728894

ABSTRACT

In this study, an electrochemical sensor based on MoS2 with enhanced electrochemical signals from electrochemically activated carbon cloth (EACC) electrodes and cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs) was developed for the detection of the unsaturated vegetable oil antioxidant tert-butylhydroquinone (TBHQ). In this approach, carbon cloth is activated through the implementation of electrochemical methods, thereby effectively increasing its specific surface area. The resulting EACC, serving as an electrode substrate, enables the growth of additional nanomaterials and enhances conductivity. The incorporation of MoS2 effectively augments the sensitivity of the electrochemical sensor. Subsequently, MIP/MoS2/EMCC is formed via electropolymerization, utilizing TBHQ as the template molecule and o-ATP@AuNPs as the functional monomer. The SS bond of o-ATP ensures a strong and stable connection between MoS2 and o-ATP@AuNPs, thereby facilitating the immobilization of MIP. In addition, the high conductivity possessed by o-ATP@AuNPs could effectively improve the sensitivity of the electrochemical sensor. Under the optimal conditions, MIP/MoS2/EMCC could determine TBHQ in the range of 1 × 10-3 µM to 120 µM by differential pulse voltammetry (DPV) with a detection line of 0.72 nM. The proposed MIP/MoS2/EMCC is expected to be applied in the future for the selective and sensitive detection of TBHQ in vegetable oils.


Subject(s)
Electrochemical Techniques , Gold , Hydroquinones , Metal Nanoparticles , Hydroquinones/analysis , Hydroquinones/chemistry , Gold/chemistry , Electrochemical Techniques/instrumentation , Metal Nanoparticles/chemistry , Aniline Compounds/chemistry , Carbon/chemistry , Polymers/chemistry , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Limit of Detection , Electrodes
7.
Redox Biol ; 72: 103142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581860

ABSTRACT

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Subject(s)
Blood Platelets , Hydroquinones , Membrane Potential, Mitochondrial , Mitochondria , Organophosphorus Compounds , Platelet Aggregation Inhibitors , Reactive Oxygen Species , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Hydroquinones/pharmacology , Hydroquinones/chemistry , Blood Platelets/metabolism , Blood Platelets/drug effects , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Platelet Aggregation/drug effects , Platelet Activation/drug effects , Oxidative Phosphorylation/drug effects
8.
Anal Chem ; 96(19): 7497-7505, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687987

ABSTRACT

Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.


Subject(s)
Gold , Metal-Organic Frameworks , Oxidation-Reduction , Silver , Zirconium , Metal-Organic Frameworks/chemistry , Humans , Gold/chemistry , Silver/chemistry , Zirconium/chemistry , Spectrum Analysis, Raman , Nanotubes/chemistry , Hydroquinones/chemistry , Metal Nanoparticles/chemistry
9.
J Food Sci ; 89(6): 3591-3602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685863

ABSTRACT

Lipid oxidation often accompanies the processing and storage of peanuts, which causes a serious waste of peanut resources. To solve the problem of being prone to oxidation in peanut processing, a ternary complex antioxidant based on rosemary extract (RE) was constructed to investigate its effect on the oxidative and thermal stability of peanuts, and the inhibition of peanut oxidation by compound antioxidants was revealed by dynamic Arrhenius formula and complexation theory. The results showed that there was a synergistic effect between RE and Tert-butyl hydroquinone (TBHQ), and the antioxidant effects of RE and TBHQ were 4.86 and 1.45 times higher when used in combination than when used alone, respectively. In addition, RE-TBHQ-CA (citric acid) effectively inhibited primary and secondary oxidation of peanuts with a shelf life 8.7 times longer than that of control peanuts. This study provides a novel antioxidant compounding idea, which has a positive effect on improving the quality of peanut and other nut products, prolonging the shelf life and reducing the waste of resources. PRACTICAL APPLICATION: Compounding a complex antioxidant that permits its use in peanuts. It was found that rosemary and TBHQ might have synergistic antioxidant effects. Meanwhile, this combination of RE-TBHQ-CA effectively inhibited the oxidation of peanut oils and prolonged the shelf life of peanuts. RE-TBHQ-CA is a highly efficient complex antioxidant that can reduce the amounts of antioxidants added while maintaining high antioxidant efficiency, which may be useful for the future preservation and storage of nut products as it positively affects the quality and shelf life of the product.


Subject(s)
Antioxidants , Arachis , Citric Acid , Food Storage , Hydroquinones , Oxidation-Reduction , Plant Extracts , Rosmarinus , Rosmarinus/chemistry , Hydroquinones/chemistry , Food Storage/methods , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Arachis/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Food Preservation/methods , Food Preservatives/chemistry , Food Preservatives/pharmacology
10.
Acc Chem Res ; 57(9): 1446-1457, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38603772

ABSTRACT

Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.


Subject(s)
Oxidoreductases , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Biocatalysis , Flavins/chemistry , Flavins/metabolism , Hydroquinones/chemistry , Hydroquinones/metabolism , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Electron Transport
11.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582422

ABSTRACT

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Subject(s)
Antimony , Catechols , Electrochemical Techniques , Hydroquinones , Pyrolysis , Hydroquinones/chemistry , Hydroquinones/analysis , Catechols/analysis , Catechols/chemistry , Antimony/chemistry , Antimony/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sulfides/chemistry
12.
Thromb Res ; 230: 55-63, 2023 10.
Article in English | MEDLINE | ID: mdl-37639783

ABSTRACT

Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Thrombosis , Humans , Diabetes Mellitus, Type 2/drug therapy , Hydroquinones/pharmacology , Hydroquinones/therapeutic use , Hydroquinones/chemistry , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Activation , Mitochondria , Thrombosis/drug therapy , Blood Platelets/metabolism
13.
Nat Commun ; 14(1): 3416, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296134

ABSTRACT

Quinol-dependent nitric oxide reductases (qNORs) are considered members of the respiratory heme-copper oxidase superfamily, are unique to bacteria, and are commonly found in pathogenic bacteria where they play a role in combating the host immune response. qNORs are also essential enzymes in the denitrification pathway, catalysing the reduction of nitric oxide to nitrous oxide. Here, we determine a 2.2 Å cryoEM structure of qNOR from Alcaligenes xylosoxidans, an opportunistic pathogen and a denitrifying bacterium of importance in the nitrogen cycle. This high-resolution structure provides insight into electron, substrate, and proton pathways, and provides evidence that the quinol binding site not only contains the conserved His and Asp residues but also possesses a critical Arg (Arg720) observed in cytochrome bo3, a respiratory quinol oxidase.


Subject(s)
Hydroquinones , Nitric Oxide , Nitric Oxide/metabolism , Hydroquinones/chemistry , Oxidoreductases/metabolism , Bacteria/metabolism
14.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36831944

ABSTRACT

Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 µAµM-1 cm-2 and a low limit of detection (LOD) of 0.074 µM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 µM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.


Subject(s)
Metal Nanoparticles , Nanocomposites , Hydroquinones/analysis , Hydroquinones/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Silicon , Palladium/chemistry , Pyrroles/chemistry , Soot , Porosity , Reproducibility of Results , Carbon/chemistry , Nanocomposites/chemistry , Electrodes , Electrochemical Techniques/methods
15.
Sci Total Environ ; 855: 158878, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36152851

ABSTRACT

The simultaneous determination of dihydroxybenzene isomers is highly valuable for early environmental monitoring, but it is still a challenge. In this work, a free-standing flexible electrode was prepared for the simultaneous detection of hydroquinone (HQ), catechol (CC), and resorcinol (RC). The bimetallic zinc/cobalt zeolitic imidazolate frameworks nanoplate arrays (Zn/Co-ZIF NPAs) grown in situ on the carbon fiber cloth (CFC) was fabricated by a facile static synthesis method, and the porous ternary ZnCo2O4 NPAs derived from Zn/Co-ZIF NPAs were formed by annealing in air. Due to the fast electron transmission, abundant active sites and excellent electrocatalytic properties with enzyme-like kinetic performance of the ZnCo2O4/CFC electrode, the as-proposed sensor showed a wilder linear response (2-500 µM), a lower detection limits (0.03 µM HQ, 0.06 µM CC and 0.15 µM RC) and a higher sensitivity (23.58 µA µM-1 cm-2 HQ, 17.72 µA µM-1 cm-2 CC, and 15.18 µA µM-1 cm-2 RC), respectively. More importantly, the proposed electrochemical sensor exhibited excellent detection performance in complex water samples, providing a strategy for the detection of other toxic substances in the ecological environment.


Subject(s)
Hydroquinones , Zeolites , Carbon Fiber , Electrodes , Hydroquinones/chemistry
16.
Food Chem ; 403: 134286, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36174346

ABSTRACT

A sensing layer containing ZnO@MnO2-rGO nanocomposite was used for modification glassy carbon electrode (GCE) for monitoring some antioxidant molecules including Hydroquinone (HQ), Mono-Tert-butyl hydroquinone (MTBHQ) and catechol (CC). The resulting ZnO@MnO2-rGO/GCE exhibited significant electrocatalytic activities toward the electro-oxidation of MTBHQ, HQ, and CC in the linear range (LR) of 0.008 to 10 µM and 10 to 350 µM for MTBHQ, 0.008 to 10 µM and 10 to 320 µM for HQ, 0.008 to 8 µM and 8 to 330 µM for CC with the limits of detection (LOD) of 0.0011, 0.0012 and 0.001 µM, respectively by differential pulse voltammetric (DPV). The prepared sensor has been used to analysis of different real samples containing target analytes with satisfactory results. Based on the percentage of recovery range (95.5-104.4 %), Relative standard deviation (RSD%, below 3.51 %), and the obtained data from the HPLC method, the presented method are accurate with acceptable precision.


Subject(s)
Nanocomposites , Zinc Oxide , Hydroquinones/chemistry , Antioxidants , Polymers/chemistry , Manganese Compounds , Oxides , Catechols/chemistry , Nanocomposites/chemistry , Carbon/chemistry
17.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558059

ABSTRACT

The use of biolubricants as a replacement for petroleum-based products is becoming more and more important, due to the current global energy and crude oil scenario. Thus, the production of biolubricants (which could take place in biorefineries) should be as efficient as possible, obtaining high-quality products with suitable viscosity or oxidation stability values to compete with oil refineries. One of the ways to produce biolubricants is through double transesterification from vegetable oils, where the role of catalysts (usually homogeneous) is vital, as they can improve the yield of the process. However, they should be removed after the chemical reaction, which is difficult once the biolubricant is obtained. Otherwise, they could act as catalysts during oxidation, contributing to a further decrease in oxidation stability and provoking significant changes. To avoid this, antioxidant addition could be an interesting choice. The aim of this work was to assess TBHQ addition in frying oil biolubricants, monitoring properties such as viscosity, acid number, absorbance or TBHQ content (through voltammetry) during oxidation. TBHQ addition (2114 mg·L-1) kept the main quality parameters during oxidation compared to control samples. In contrast, TBHQ content decreased during oxidation (to 160 mg·L-1), which proved its antioxidant effect.


Subject(s)
Antioxidants , Hydroquinones , Oxidation-Reduction , Antioxidants/chemistry , Hydroquinones/chemistry , Esterification , Plant Oils
18.
Mikrochim Acta ; 189(10): 381, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36098809

ABSTRACT

Different morphology of N-doped carbon materials, including three-dimensional interconnected N-doped hierarchically porous carbon networks (3D-NC), two-dimensional ultrathin porous carbon nanosheets (2D-NC), and bulk N-doped carbon with micron size (bulk-NC), was easily prepared by using NaCl crystal templates-assisted strategy. Compared with bare glassy carbon, bulk-NC, and 2D-NC, the as-synthesized 3D-NC exhibits excellent electrochemical activity toward the oxidation and sensing of three kinds of common environmental pollutants dihydroxybenzene isomers (hydroquinone (HQ), catechol (CC), and resorcinol (RS)). The impressive electrochemical activity of 3D-NC can be interpreted by its large specific surface area, continuous network-like morphology, superior electro-catalytic ability, and strong accumulation efficiency. Differential pulse voltammetry (DPV) test showed the 3D-NC-modified electrode exhibited three well-separated oxidation peaks at 0.05 V, 0.14 V, and 0.45 V vs. saturated calomel electrode (SCE) for HQ, CC, and RS, and their detection limits were evaluated to be as low as 0.0044, 0.012, and 0.016 mg L-1, respectively. Finally, a novel electrochemical analytical platform is successfully fabricated for the simultaneous monitoring of hydroquinone, catechol, and resorcinol with high sensitivity. When used for real wastewater samples analysis, recovery ratio ranging from 94 to 108% with lower than 5% of relative standard deviation (RSD) values was achieved. This work proves a facile strategy to prepare morphology-controlled N-doped carbon-based material and demonstrates its high application potential for environmental monitoring and electrochemical analysis.


Subject(s)
Carbon , Hydroquinones , Carbon/chemistry , Catechols/chemistry , Hydroquinones/chemistry , Porosity , Resorcinols/analysis
19.
Biochim Biophys Acta Bioenerg ; 1863(8): 148907, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35944661

ABSTRACT

The heme­copper oxidoreductase (HCO) superfamily is a large superfamily of terminal respiratory enzymes that are widely distributed across the three domains of life. The superfamily includes biochemically diverse oxygen reductases and nitric oxide reductases that are pivotal in the pathways of aerobic respiration and denitrification. The adaptation of HCOs to use quinol as the electron donor instead of cytochrome c has significant implication for the respiratory flexibility and energetic efficiency of the respiratory chains that include them. In this work, we explore the adaptation of this scaffold to two different electron donors, cytochromes c and quinols, with extensive sequence analysis of these enzymes from publicly available datasets. Our work shows that quinol oxidation evolved independently within the HCO superfamily at least seven times. Enzymes from only two of these independently evolved clades have been biochemically well-characterized. Combining structural modeling with sequence analysis, we identify putative quinol binding sites in each of the novel quinol oxidases. Our analysis of experimental and modeling data suggests that the quinol binding site appears to have evolved at the same structural position within the scaffold more than once.


Subject(s)
Heme , Hydroquinones , Copper , Cytochromes c , Heme/metabolism , Hydroquinones/chemistry , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism
20.
Analyst ; 147(13): 2966-2979, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35611945

ABSTRACT

Herein, a graphene-nano-molybdenum disulphide (pGr-MoS2), synthesized from pulverized graphite and using precursors of MoS2, was investigated for the electrochemical sensing of dihydroxy benzene isomers (DHBI): hydroquinone (HQ), catechol (CA), and resorcinol (RE). Interestingly, the material could sense the three isomers simultaneously, with well-defined peaks and an adequate potential difference between each peak. The detection limits (3σ method) of HQ, CA, and RE on the glassy carbon electrode (GCE) modified with pGr-MoS2 are 10-13, 10-12, and 10-8 M (i.e., 0.1 pM, 1 pM, and 10 nM), respectively, and are the lowest reported so far for the isomers. The pGr-MoS2/GCE exhibited selectivity towards DHBI, in the presence of other toxic contaminants and metal ions such as phenol, dinitrophenol, trinitrophenol, urea and glucose, Hg(II), Ca(II), Ni(II), Zn(II), Cu(II), Na(I) and K(I). A possible mechanism for this superior selectivity of pGr-MoS2 towards DHBI is discussed based on the structural properties of pGr-MoS2 with evidence. Further, the pGr-MoS2 sensor exhibited reproducibility (with six different electrodes), stability (≥90 days), and repeatability properties. The sensing performance was successfully demonstrated in real water samples such as ground-, tap-, and river- water spiked with HQ, CA, and RE.


Subject(s)
Graphite , Carbon/chemistry , Catechols/chemistry , Electrodes , Graphite/chemistry , Hydroquinones/chemistry , Molybdenum/chemistry , Reproducibility of Results , Resorcinols , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...