Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Theriogenology ; 108: 39-45, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29197291

ABSTRACT

Oxidative stress (OS) is characterized by an unbalance between increased levels of reactive oxygen species (ROS) and/or impaired antioxidant protection. In this context, the composition of seminal plasma (SP) plays a key role in protecting sperm against OS. However, reproductive biotechnologies applied to dogs recommend the removal of SP. Thus, antioxidant therapy may be an important alternative when applying biotechniques such as semen cryopreservation in this specie. However, in order to be efficient, the choice of the ideal antioxidant in each condition is essential since each ROS is preferably neutralized by different antioxidant systems. Therefore, this study aims to evaluate the susceptibility of canine spermatozoa to different oxidative challenges (superoxide anion [O2-], hydrogen peroxide [H2O2], hydroxyl radical [OH-] and malondialdehyde [MDA]) in the present or absence of SP. We used ejaculates of eight dogs and submitted to induce oxidative challenges (with or without SP). After incubations, samples were evaluated for the susceptibility to lipid peroxidation, motility, mitochondrial activity and function, DNA integrity, plasma membrane and acrosome integrity. Sperm with SP had mitochondrial function preserved against ROS. However, in the absence of SP, H2O2 reduced mitochondrial membrane potential. In addition, regardless on SP, H2O2 was deleterious to sperm kinetics and plasma/acrosomal membranes. Incubation with OH- reduced mitochondrial activity and increased DNA fragmentation also independent on the absence of presence of SP. Furthermore, samples with SP were more resistant to lipid peroxidation (i.e., decreased concentration of TBARS). In conclusion, H2O2 and OH- appears to be the most deleterious ROS to dog sperm and SP protects the spermatozoa against mitochondrial injuries and lipid peroxidation.


Subject(s)
Hydrogen Peroxide/toxicity , Hydroxyl Radical/toxicity , Semen/physiology , Spermatozoa/drug effects , Superoxides/toxicity , Animals , Dogs , Male , Oxidative Stress , Reactive Oxygen Species , Semen Analysis/veterinary , Sperm Motility/drug effects
2.
Free Radic Biol Med ; 104: 54-63, 2017 03.
Article in English | MEDLINE | ID: mdl-28062359

ABSTRACT

2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H2O2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds.


Subject(s)
Copper/toxicity , DNA Damage/drug effects , Drinking Water , Environmental Pollutants/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Chelating Agents/pharmacology , DNA Breaks, Double-Stranded/drug effects , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Environmental Pollutants/metabolism , Humans , Hydroquinones/metabolism , Hydroquinones/toxicity , Hydroxyl Radical/metabolism , Hydroxyl Radical/toxicity , Nitriles/metabolism , Nitriles/toxicity , Oxidation-Reduction , Phenanthrolines/pharmacology , Phenols/metabolism , Phenols/toxicity , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/toxicity , Reactive Oxygen Species , Superoxide Dismutase/chemistry
3.
Bol. Acad. Nac. Med. B.Aires ; 75(1): 111-43, jun. 1997. tab, graf
Article in Spanish | LILACS | ID: lil-216249

ABSTRACT

0-Naftoquinonas, como la ß-lapachona, que fueran antes propuestas como agentes antichagásicos, han resultado potentes inhibidores del crecimiento de células tumorales humanas, lo que ha renovado el interés por esas quinonas. Por ello, se revisan ahora los mecanismos de la citotoxicidad de varias o-naftoquinonas y moléculas similares, representadas por la ß-lapachona y las mansononas. La mayoría de esas quinonas son potentes inhibidores del crecimiento de Trypanosoma cruzi. Crithidia fasciculata y Leptomonas seymouri, a concentraciones del orden de 1.0-10 µM. Su acción implica la operación de reacciones redox. La inicial de reducción de la quinona a quinol (hidroquinona), es seguida por la oxidación del quinol por oxígeno molecular. La oxidación del quinol genera radicales semi-quinona, superóxico y peróxido de hidrógeno capaces de generar el radical hidroxilo, notable por su citotoxicidad. Como consecuencia de esas reacciones se produce un "daño oxidativo", que en los protozoarios estudiados se manifiesta por la disminución del ATP celular como resultado de la inhibición de la fosforilación oxidativa. También se produce disminución de la síntesis de DNA, RNA y proteínas celulares. Al mismo tiempo, las quinonas aumentan la degradación fisiológica de las mismas moléculas. Resultados similares se obtuvieron con naftoquinona-iminas. Los grupos carbonilos vecinos y el anillo tirano son estructuras esenciales para la acción citotóxica de las quinonas. Estos efectos se discuten en relación a posibles usos farmacológicos de las naftoquinonas lipofílicas.


Subject(s)
Humans , Cytotoxicity, Immunologic , DNA Damage , Growth Inhibitors , Hydroxyl Radical/toxicity , Naphthoquinones/pharmacokinetics , Naphthoquinones/toxicity , Neoplasms/drug therapy , Oxidative Phosphorylation , Quinones/toxicity , Trypanosoma cruzi , Crithidia fasciculata , Free Radicals , Trypanosomatina , Virus Diseases
4.
Bol. Acad. Nac. Med. B.Aires ; 75(1): 111-43, jun. 1997. tab, graf
Article in Spanish | BINACIS | ID: bin-18180

ABSTRACT

0-Naftoquinonas, como la ß-lapachona, que fueran antes propuestas como agentes antichagásicos, han resultado potentes inhibidores del crecimiento de células tumorales humanas, lo que ha renovado el interés por esas quinonas. Por ello, se revisan ahora los mecanismos de la citotoxicidad de varias o-naftoquinonas y moléculas similares, representadas por la ß-lapachona y las mansononas. La mayoría de esas quinonas son potentes inhibidores del crecimiento de Trypanosoma cruzi. Crithidia fasciculata y Leptomonas seymouri, a concentraciones del orden de 1.0-10 AM. Su acción implica la operación de reacciones redox. La inicial de reducción de la quinona a quinol (hidroquinona), es seguida por la oxidación del quinol por oxígeno molecular. La oxidación del quinol genera radicales semi-quinona, superóxico y peróxido de hidrógeno capaces de generar el radical hidroxilo, notable por su citotoxicidad. Como consecuencia de esas reacciones se produce un "daño oxidativo", que en los protozoarios estudiados se manifiesta por la disminución del ATP celular como resultado de la inhibición de la fosforilación oxidativa. También se produce disminución de la síntesis de DNA, RNA y proteínas celulares. Al mismo tiempo, las quinonas aumentan la degradación fisiológica de las mismas moléculas. Resultados similares se obtuvieron con naftoquinona-iminas. Los grupos carbonilos vecinos y el anillo tirano son estructuras esenciales para la acción citotóxica de las quinonas. Estos efectos se discuten en relación a posibles usos farmacológicos de las naftoquinonas lipofílicas.(AU)


Subject(s)
Humans , Growth Inhibitors , Trypanosoma cruzi , Naphthoquinones/pharmacokinetics , Naphthoquinones/toxicity , Quinones/toxicity , DNA Damage , Cytotoxicity, Immunologic , Hydroxyl Radical/toxicity , Oxidative Phosphorylation , Neoplasms/drug therapy , Virus Diseases , Free Radicals , Crithidia fasciculata , Trypanosomatina
SELECTION OF CITATIONS
SEARCH DETAIL