ABSTRACT
Diabetes mellitus (DM) is a chronic metabolic disease that affects bone metabolism, which can be related to a reduced osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs). MSCs from diabetic rats (dBM-MSC) have shown a tendency to differentiate towards adipocytes (AD) instead of osteoblasts (OB). Since photobiomodulation (PBM) therapy is a non-invasive treatment capable of recovering the osteogenic potential of dBM-MSCs, we aimed to evaluate whether PBM can modulate MSC's differentiation under hyperglycemic conditions. BM-MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB) and adipocytes (AD and dAD). dOB and dAD were treated with PBM every 3 days (660 nm; 5 J/cm2; 0.14 J; 20 mW; 0.714 W/cm2) for 17 days. Cell morphology and viability were evaluated, and cell differentiation was confirmed by gene expression (RT-PCR) of bone (Runx2, Alp, and Opn) and adipocyte markers (Pparγ, C/Ebpα, and C/Ebpß), production of extracellular mineralized matrix (Alizarin Red), and lipid accumulation (Oil Red). Despite no differences on cell morphology, the effect of DM on cells was confirmed by a decreased gene expression of bone markers and matrix production of dOB, and an increased expression of adipocyte and lipid accumulation of dAD, compared to heatlhy cells. On the other hand, PBM reversed the effects of dOB and dAD. The negative effect of DM on cells was confirmed, and PBM improved OB differentiation while decreasing AD differentiation, driving the fate of dBM-MSCs. These results may contribute to optimizing bone regeneration in diabetic patients.
Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Mesenchymal Stem Cells , Adipocytes , Animals , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/radiotherapy , Hyperglycemia/metabolism , Hyperglycemia/radiotherapy , Lipids , Osteoblasts , Osteogenesis/genetics , RatsABSTRACT
Systemic inflammation is closely related to the development of insulin resistance and type-2 diabetes, since the activation of pro-inflammatory pathways leads to inhibition of insulin signaling. Although photobiomodulation (PBM) has proven beneficial effects on the treatment of inflammatory disorders, the phototherapeutic approach to manage the chronic inflammatory component of obesity and hyperglycemia had never been explored. In this work, obese and hyperglycemic mice are treated with PBM, and their body mass, glycemia and inflammatory infiltrate of abdominal adipose tissue are evaluated. During four weeks, irradiated animals are exposed to six irradiation sessions using an 843 nm LED (5.7 J cm-2 at 19 mW cm-2 per session). Non-irradiated control animals display inflammatory areas almost five times greater than the treated group (p < 0.001). This result on inflammatory infiltrate may have caused impacts on the significant lower blood glucose level from irradiated animals (p = 0.04), twenty-four hours after the last irradiation session. PBM on obese and hyperglycemic mice reduced five times the areas of inflammatory infiltrate within abdominal adipose tissue (a, b), whereas dense inflammatory regions were a common finding amidst non-irradiated animals (c). The asterisks on (c) correspond to the inflammatory infiltrate permeating adipocytes.