Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.816
Filter
1.
Cell Metab ; 36(5): 1013-1029.e5, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38547864

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.


Subject(s)
Inosine , Mice, Inbred C57BL , Mitochondria , Transketolase , Animals , Transketolase/metabolism , Mice , Inosine/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Male , Mice, Knockout , Liver/metabolism , Hyperinsulinism/metabolism , Female
2.
Am J Physiol Endocrinol Metab ; 326(5): E616-E625, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477665

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) has been identified as risk factor of incident type 2 diabetes (T2D), but the underlying postprandial mechanisms remain unclear. We compared the glucose metabolism, insulin resistance, insulin secretion, and insulin clearance post-oral glucose tolerance test (OGTT) between individuals with and without MAFLD. We included 50 individuals with a body mass index (BMI) between 25 and 40 kg/m2 and ≥1 metabolic alteration: increased fasting triglycerides or insulin, plasma glucose 5.5-6.9 mmol/L, or glycated hemoglobin 5.7-5.9%. Participants were grouped according to MAFLD status, defined as hepatic fat fraction (HFF) ≥5% on MRI. We used oral minimal model on a frequently sampled 3 h 75 g-OGTT to estimate insulin sensitivity, insulin secretion, and pancreatic ß-cell function. Fifty percent of participants had MAFLD. Median age (IQR) [57 (45-65) vs. 57 (44-63) yr] and sex (60% vs. 56% female) were comparable between groups. Post-OGTT glucose concentrations did not differ between groups, whereas post-OGTT insulin concentrations were higher in the MAFLD group (P < 0.03). Individuals with MAFLD exhibited lower insulin clearance, insulin sensitivity, and first-phase pancreatic ß-cell function. In all individuals, increased insulin incremental area under the curve and decreased insulin clearance were associated with HFF after adjusting for age, sex, and BMI (P < 0.02). Among individuals with metabolic alterations, the presence of MAFLD was characterized mainly by post-OGTT hyperinsulinemia and reduced insulin clearance while exhibiting lower first phase ß-cell function and insulin sensitivity. This suggests that MAFLD is linked with impaired insulin metabolism that may precede T2D.NEW & NOTEWORTHY Using an oral glucose tolerance test, we found hyperinsulinemia, lower insulin sensitivity, lower insulin clearance, and lower first-phase pancreatic ß-cell function in individuals with MAFLD. This may explain part of the increased risk of incident type 2 diabetes in this population. These data also highlight implications of hyperinsulinemia and impaired insulin clearance in the progression of MAFLD to type 2 diabetes.


Subject(s)
Blood Glucose , Glucose Tolerance Test , Hyperinsulinism , Insulin Resistance , Insulin , Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Middle Aged , Hyperinsulinism/metabolism , Hyperinsulinism/blood , Aged , Adult , Blood Glucose/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Insulin/blood , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Postprandial Period , Insulin Secretion , Body Mass Index , Liver/metabolism , Insulin-Secreting Cells/metabolism
3.
Nutrients ; 16(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542783

ABSTRACT

There is currently a growing interest in the use of nutraceuticals as a means of preventing the development of complex diseases. Given the considerable health potential of milk-derived peptides, the aim of this study was to investigate the protective effects of glycomacropeptide (GMP) on metabolic syndrome. Particular emphasis was placed on the potential mechanisms mitigating cardiometabolic disorders in high-fat, high-fructose diet-fed mice in the presence of GMP or Bipro, an isocaloric control. The administration of GMP for 12 weeks reduced obesity, hyperglycemia and hyperinsulinemia caused by a high-fat, high-fructose diet, resulting in a decline in insulin resistance. GMP also lessened systemic inflammation, as indicated by decreased circulating inflammatory cytokines. In the intestinal and hepatic tissues, GMP improved homeostasis by increasing insulin sensitivity and attenuating high-fat, high-fructose-induced inflammation, oxidative stress and endoplasmic reticulum stress. Biochemical and histological analyses revealed improved hepatic steatosis and fatty acid composition in the livers of high-fat, high-fructose diet-fed mice treated with GMP compared to Bipro. A trend toward a decrease in bile acids without any marked changes in intestinal microbiota composition characterized GMP-treated animals compared to those administered Bipro. GMP offers considerable potential for fighting metabolic syndrome-related components and complications given its beneficial effects on risk factors such as inflammation, oxidative stress and endoplasmic reticulum stress without involving the intestinal microbiota.


Subject(s)
Caseins , Hyperinsulinism , Insulin Resistance , Metabolic Syndrome , Peptide Fragments , Animals , Mice , Metabolic Syndrome/metabolism , Liver/metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects , Hyperinsulinism/metabolism , Fructose/metabolism , Mice, Inbred C57BL
4.
J Endocrinol ; 261(1)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38305305

ABSTRACT

Metabolic syndrome (MetS) is an increasing global health threat and strong risk factor for type 2 diabetes (T2D). MetS causes both hyperinsulinemia and islet size overexpansion, and pancreatic ß-cell failure impacts insulin and proinsulin secretion, mitochondrial density, and cellular identity loss. The low-density lipoprotein receptor knockout (LDLr-/-) model combined with high-fat diet (HFD) has been used to study alterations in multiple organs, but little is known about the changes to ß-cell identity resulting from MetS. Osteocalcin (OC), an insulin-sensitizing protein secreted by bone, shows promising impact on ß-cell identity and function. LDLr-/- mice at 12 months were fed chow or HFD for 3 months ± 4.5 ng/h OC. Islets were examined by immunofluorescence for alterations in nuclear Nkx6.1 and PDX1 presence, insulin-glucagon colocalization, islet size and %ß-cell and islet area by insulin and synaptophysin, and mitochondria fluorescence intensity by Tomm20. Bone mineral density (BMD) and %fat changes were examined by Piximus Dexa scanning. HFD-fed mice showed fasting hyperglycemia by 15 months, increased weight gain, %fat, and fasting serum insulin and proinsulin; concurrent OC treatment mitigated weight increase and showed lower proinsulin-to-insulin ratio, and higher BMD. HFD increased %ß and %islet area, while simultaneous OC-treatment with HFD was comparable to chow-fed mice. Significant reductions in nuclear PDX1 and Nkx6.1 expression, increased insulin-glucagon colocalization, and reduction in ß-cell mitochondria fluorescence intensity were noted with HFD, but largely prevented with OC administration. OC supplementation here suggests a benefit to ß-cell identity in LDLr-/- mice and offers intriguing clinical implications for countering metabolic syndrome.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin-Secreting Cells , Islets of Langerhans , Metabolic Syndrome , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucagon/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Lipoproteins, LDL , Metabolic Syndrome/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteocalcin/metabolism , Proinsulin/metabolism , Weight Gain
5.
Curr Oncol ; 31(2): 998-1027, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38392069

ABSTRACT

Insulin resistance, also known as impaired insulin sensitivity, is the result of a decreased reaction of insulin signaling to blood glucose levels. This state is observed when muscle cells, adipose tissue, and liver cells, improperly respond to a particular concentration of insulin. Insulin resistance and related increased plasma insulin levels (hyperinsulinemia) may cause metabolic impairments, which are pathological states observed in obesity and type 2 diabetes mellitus. Observations of cancer patients confirm that hyperinsulinemia is a major factor influencing obesity, type 2 diabetes, and cancer. Obesity and diabetes have been reported as risks of the initiation, progression, and metastasis of several cancers. However, both of the aforementioned pathologies may independently and additionally increase the cancer risk. The state of metabolic disorders observed in cancer patients is associated with poor outcomes of cancer treatment. For example, patients suffering from metabolic disorders have higher cancer recurrence rates and their overall survival is reduced. In these associations between insulin resistance and cancer risk, an overview of the various pathogenic mechanisms that play a role in the development of cancer is discussed.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Humans , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Neoplasm Recurrence, Local , Hyperinsulinism/complications , Hyperinsulinism/metabolism , Obesity/complications , Insulin
6.
J Ovarian Res ; 17(1): 31, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310251

ABSTRACT

BACKGROUND: Investigating the underlying molecular mechanisms responsible for endometrial dysfunction in women with PCOS is essential, particularly focusing on the role of hyperinsulinemia. METHODS: We explored the role of insulin in the decidualization process using a synthetic decidualization assay. To dissect the effects of PI3K/AKT-NR4A signaling, we employed small interfering RNAs (siRNAs) targeting the NR4A genes and inhibitors of the PI3K/AKT pathway. We also investigated the disruption of AKT-NR4A1 signaling in the endometrium of PCOS female rats induced with dehydroepiandrosterone (DHEA). Quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses were utilized to evaluate gene expression regulation. RESULTS: Insulin was found to suppress the expression of decidualization markers in human endometrial stromal cells (hESC) in a dose-dependent manner, concurrently triggering an inappropriate activation of the PI3K/AKT pathway. Members of the NR4A family, as downstream effectors in the PI3K/AKT pathway, were implicated in the insulin-induced disruptions during the decidualization process. Moreover, the endometrium of PCOS models showed significantly elevated levels of phosphorylated (Ser473) AKT, with a corresponding reduction in Nr4a1 protein. CONCLUSIONS: Our research demonstrates that insulin negatively regulates decidualization in hESC via the PI3K/AKT-NR4A pathway. In vivo analysis revealed a significant dysregulation of the AKT-NR4A1 pathway in the endometrium of PCOS rats. These findings offer novel insights into the pathogenesis of infertility and endometrial disorders associated with hyperinsulinemia in PCOS.


Subject(s)
Hyperinsulinism , Infertility , Polycystic Ovary Syndrome , Animals , Female , Humans , Rats , Endometrium/metabolism , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Insulin/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1 , Phosphatidylinositol 3-Kinases/metabolism , Polycystic Ovary Syndrome/pathology , Proto-Oncogene Proteins c-akt/metabolism
7.
Cancer Res ; 84(3): 351-352, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38095504

ABSTRACT

Although there has been a long-standing connection between hyperinsulinemia and cancer development, there is a lack of understanding of the role of the insulin receptor on cells that can become cancerous. In a recent issue of Cell Metabolism, Zhang and colleagues, using a diet-induced obesity mouse model, identified a direct function of insulin receptors on pancreatic acinar cells expressing a KRASG12D mutation in promoting obesity-associated pancreatic cancer. Furthermore, insulin receptor signaling from hyperinsulinemia promoted the secretion of digestive enzymes that contributed to acinar to ductal metaplasia. These findings highlight an important connection between obesity, diabetes, and pancreatic tumor development and suggest potential strategies for obesity-associated cancer prevention targeting the insulin receptor signaling pathways.


Subject(s)
Carcinoma, Pancreatic Ductal , Hyperinsulinism , Pancreatic Neoplasms , Mice , Animals , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Obesity/metabolism , Acinar Cells/metabolism , Hyperinsulinism/complications , Hyperinsulinism/metabolism
8.
Am J Physiol Endocrinol Metab ; 326(1): E92-E105, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019082

ABSTRACT

Zinc is an essential component of the insulin protein complex synthesized in ß cells. The intracellular compartmentalization and distribution of zinc are controlled by 24 transmembrane zinc transporters belonging to the ZnT or Zrt/Irt-like protein (ZIP) family. Downregulation of SLC39A14/ZIP14 has been reported in pancreatic islets of patients with type 2 diabetes (T2D) as well as mouse models of high-fat diet (HFD)- or db/db-induced obesity. Our previous studies observed mild hyperinsulinemia in mice with whole body knockout of Slc39a14 (Zip14 KO). Based on our current secondary data analysis from an integrative single-cell RNA-seq dataset of human whole pancreatic tissue, SLC39A14 (coding ZIP14) is the only other zinc transporter expressed abundantly in human ß cells besides well-known zinc transporter SLC30A8 (coding ZnT8). In the present work, using pancreatic ß cell-specific knockout of Slc39a14 (ß-Zip14 KO), we investigated the role of SLC39A14/ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses. Glucose-stimulated insulin secretion, zinc concentrations, and cellular localization of ZIP14 were assessed using in vivo, ex vivo, and in vitro assays using ß-Zip14 KO, isolated islets, and murine cell line MIN6. Metabolic evaluations were done on both chow- and HFD-fed mice using time-domain nuclear magnetic resonance and a comprehensive laboratory animal monitoring system. ZIP14 localizes on the endoplasmic reticulum regulating intracellular zinc trafficking in ß cells and serves as a negative regulator of glucose-stimulated insulin secretion. Deletion of Zip14 resulted in greater glucose-stimulated insulin secretion, increased energy expenditure, and shifted energy metabolism toward fatty acid utilization. HFD caused ß-Zip14 KO mice to develop greater islet hyperplasia, compensatory hyperinsulinemia, and mild insulin resistance and hyperglycemia. This study provided new insights into the contribution of metal transporter ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses.NEW & NOTEWORTHY Metal transporter SLC39A14/ZIP14 is downregulated in pancreatic islets of patients with T2D and mouse models of HFD- or db/db-induced obesity. However, the function of ZIP14-mediated intracellular zinc trafficking in ß cells is unknown. Our analyses revealed that SLC39A14 is the only Zn transporter expressed abundantly in human ß cells besides SLC30A8. Within the ß cells, ZIP14 is localized on the endoplasmic reticulum and serves as a negative regulator of insulin secretion, providing a potential therapeutic target for T2D.


Subject(s)
Cation Transport Proteins , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin-Secreting Cells , Humans , Mice , Animals , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Glucose/metabolism , Insulin/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Obesity/genetics , Obesity/metabolism , Zinc/metabolism , Mice, Knockout
9.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068958

ABSTRACT

Alzheimer's disease (AD) is the most common form of neurodegenerative disease worldwide. A large body of work implicates insulin resistance in the development and progression of AD. Moreover, impairment in mitochondrial function, a common symptom of insulin resistance, now represents a fundamental aspect of AD pathobiology. Ceramides are a class of bioactive sphingolipids that have been hypothesized to drive insulin resistance. Here, we describe preliminary work that tests the hypothesis that hyperinsulinemia pathologically alters cerebral mitochondrial function in AD mice via accrual of the ceramides. Homozygous male and female ApoE4 mice, an oft-used model of AD research, were given chronic injections of PBS (control), insulin, myriocin (an inhibitor of ceramide biosynthesis), or insulin and myriocin over four weeks. Cerebral ceramide content was assessed using liquid chromatography-mass spectrometry. Mitochondrial oxygen consumption rates were measured with high-resolution respirometry, and H2O2 emissions were quantified via biochemical assays on brain tissue from the cerebral cortex. Significant increases in brain ceramides and impairments in brain oxygen consumption were observed in the insulin-treated group. These hyperinsulinemia-induced impairments in mitochondrial function were reversed with the administration of myriocin. Altogether, these data demonstrate a causative role for insulin in promoting brain ceramide accrual and subsequent mitochondrial impairments that may be involved in AD expression and progression.


Subject(s)
Hyperinsulinism , Insulin Resistance , Neurodegenerative Diseases , Mice , Male , Female , Animals , Insulin/metabolism , Ceramides/metabolism , Apolipoprotein E4/metabolism , Hydrogen Peroxide/metabolism , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Insulin, Regular, Human , Energy Metabolism , Hyperinsulinism/metabolism
10.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003671

ABSTRACT

The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Child , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Neurophysiology , Glucose/metabolism , Insulin Resistance/physiology , Hippocampus/metabolism , Hyperinsulinism/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Dementia/metabolism , Insulin/metabolism
11.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834116

ABSTRACT

Adequate perfusion of cerebral tissues, which is necessary for the preservation of optimal brain health, depends on insulin signaling within brain endothelial cells. Proper insulin signaling relies on the regulated internalization of insulin bound to the insulin receptor, a process which is disrupted by hyperinsulinemia via an unknown mechanism. Thus, the goal of this study was to characterize the impact of hyperinsulinemia on the regulation of molecular targets involved in cerebral blood flow and insulin receptor internalization into brain endothelial cells. The phosphorylation of molecular targets associated with cerebral blood flow and insulin receptor internalization was assessed in hyperinsulinemic brain endothelial cells. Insulin receptor uptake into cells was also examined in the setting of endocytosis blockade. Our data demonstrate that hyperinsulinemia impairs the activation of endothelial nitric oxide synthase. These data correspond with an impairment in clathrin-mediated endocytosis of the insulin receptor and dysregulated phosphorylation of key internalization effectors. We conclude that hyperinsulinemia alters the phosphorylation of molecular targets involved in clathrin-mediated endocytosis, disrupts signaling through the insulin receptor, and hinders the capacity for blood flow regulation by brain endothelial cells.


Subject(s)
Hyperinsulinism , Receptor, Insulin , Humans , Receptor, Insulin/metabolism , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Endocytosis/physiology , Brain/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Clathrin/metabolism , Phosphorylation
12.
J Periodontal Res ; 58(6): 1290-1299, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723987

ABSTRACT

BACKGROUND AND OBJECTIVE: The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic ß-cell proliferation in a rat model. MATERIALS AND METHODS: Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) ß (HOMA-ß) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of ß-cells and the number of Ki67-positive ß-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS: Increased serum LPS level, FINS level, and HOMA-ß index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased ß-cells, increased Ki67-positive ß-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION: Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory ß-cell proliferation, by using a CP rat model.


Subject(s)
Chronic Periodontitis , Hyperinsulinism , Islets of Langerhans , Rats , Male , Animals , Islets of Langerhans/pathology , Rats, Sprague-Dawley , Chronic Periodontitis/metabolism , Ki-67 Antigen/metabolism , Lipopolysaccharides/pharmacology , Hyperinsulinism/complications , Hyperinsulinism/metabolism , Insulin , Blood Glucose/metabolism
13.
Int J Mol Sci ; 24(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37511575

ABSTRACT

Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.


Subject(s)
Breast Neoplasms , Diabetes Mellitus, Type 2 , Diabetes Mellitus , Hyperglycemia , Hyperinsulinism , Humans , Female , Breast Neoplasms/genetics , Hyperglycemia/complications , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperinsulinism/complications , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Glycemic Index , Diabetes Mellitus, Type 2/pathology
14.
FASEB J ; 37(7): e23021, 2023 07.
Article in English | MEDLINE | ID: mdl-37289137

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.


Subject(s)
GTPase-Activating Proteins , Hyperinsulinism , Insulin , Physical Conditioning, Animal , Animals , Female , Male , Rats , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Physical Conditioning, Animal/physiology , Serine/metabolism , Threonine/metabolism
15.
Mol Metab ; 74: 101752, 2023 08.
Article in English | MEDLINE | ID: mdl-37308077

ABSTRACT

BACKGROUND: Insulin, secreted from pancreatic islets of Langerhans, is of critical importance in regulating glucose homeostasis. Defective insulin secretion and/or the inability of tissues to respond to insulin results in insulin resistance and to several metabolic and organ alterations. We have previously demonstrated that BAG3 regulates insulin secretion. Herein we explored the consequences of beta-cells specific BAG3 deficiency in an animal model. METHODS: We generated a beta-cells specific BAG3 knockout mouse model. Glucose and insulin tolerance tests, proteomics, metabolomics, and immunohistochemical analysis were used to investigate the role of BAG3 in regulating insulin secretion and the effects of chronic exposure to excessive insulin release in vivo. RESULTS: Beta-cells specific BAG3 knockout results in primary hyperinsulinism due to excessive insulin exocytosis finally leading to insulin resistance. We demonstrate that resistance is mainly muscle-dependent while the liver remains insulin sensitive. The chronically altered metabolic condition leads in time to histopathological alterations in different organs. We observe elevated glycogen and lipid accumulation in the liver reminiscent of non-alcoholic fatty liver disease as well as mesangial matrix expansion and thickening of the glomerular basement membrane, resembling the histology of chronic kidney disease. CONCLUSION: Altogether, this study shows that BAG3 plays a role in insulin secretion and provides a model for the study of hyperinsulinemia and insulin resistance.


Subject(s)
Hyperinsulinism , Insulin Resistance , Insulin-Secreting Cells , Mice , Animals , Insulin Resistance/genetics , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Mice, Knockout
16.
J Mol Cell Biol ; 15(5)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37188647

ABSTRACT

Brain-specific serine/threonine-protein kinase 2 (BRSK2) plays critical roles in insulin secretion and ß-cell biology. However, whether BRSK2 is associated with human type 2 diabetes mellitus (T2DM) has not been determined. Here, we report that BRSK2 genetic variants are closely related to worsening glucose metabolism due to hyperinsulinemia and insulin resistance in the Chinese population. BRSK2 protein levels are significantly elevated in ß cells from T2DM patients and high-fat diet (HFD)-fed mice due to enhanced protein stability. Mice with inducible ß-cell-specific Brsk2 knockout (ßKO) exhibit normal metabolism with a high potential for insulin secretion under chow-diet conditions. Moreover, ßKO mice are protected from HFD-induced hyperinsulinemia, obesity, insulin resistance, and glucose intolerance. Conversely, gain-of-function BRSK2 in mature ß cells reversibly triggers hyperglycemia due to ß-cell hypersecretion-coupled insulin resistance. Mechanistically, BRSK2 senses lipid signals and induces basal insulin secretion in a kinase-dependent manner. The enhanced basal insulin secretion drives insulin resistance and ß-cell exhaustion and thus the onset of T2DM in mice fed an HFD or with gain-of-function BRSK2 in ß cells. These findings reveal that BRSK2 links hyperinsulinemia to systematic insulin resistance via interplay between ß cells and insulin-sensitive tissues in the populations carrying human genetic variants or under nutrient-overload conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Insulin-Secreting Cells , Humans , Mice , Animals , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Diet, High-Fat
17.
J Trace Elem Med Biol ; 78: 127198, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196548

ABSTRACT

BACKGROUND: Cellular free Zn2+ concentrations ([Zn2+]) are primarily coordinated by Zn2+-transporters, although their roles are not well established in cardiomyocytes. Since we previously showed the important contribution of a Zn2+-transporter ZnT7 to [Zn2+]i regulation in hyperglycemic cardiomyocytes, here, we aimed to examine a possible regulatory role of ZnT7 not only on [Zn2+]i but also both the mitochondrial-free Zn2+ and/or Ca2+ in cardiomyocytes, focusing on the contribution of its overexpression to the mitochondrial function. METHODS: We mimicked either hyperinsulinemia (by 50-µM palmitic acid, PA-cells, for 24-h) or overexpressed ZnT7 (ZnT7OE-cells) in H9c2 cardiomyoblasts. RESULTS: Opposite to PA-cells, the [Zn2+]i in ZnT7OE-cells was not different from untreated H9c2-cells. An investigation of immunofluorescence imaging by confocal microscopy demonstrated a ZnT7 localization on the mitochondrial matrix. We demonstrated the ZnT7 localization on the mitochondrial matrix by using immunofluorescence imaging. Later, we determined the mitochondrial levels of [Zn2+]Mit and [Ca2+]Mit by using the Zn2+ and Ca2+ sensitive FRET probe and a Ca2+-sensitive dye Fluo4, respectively. The [Zn2+]Mit was found to increase significantly in ZnT7OE-cells, similar to the PA-cells while no significant changes in the [Ca2+]Mit in these cells. To examine the contribution of ZnT7 overexpression on the mitochondria function, we determined the level of reactive oxygen species (ROS) and the mitochondrial membrane potential (MMP) in these cells in comparison to the PA-cells. There were significantly increased production of ROS and depolarization in MMP and increases in marker proteins of mitochondria-associated apoptosis and autophagy in ZnT7-OE cells, similar to the PA-cells, parallel to increases in K-acetylation. Moreover, we determined significant increases in trimethylation of histone H3 lysine27, H3K27me3, and the mono-methylation of histone H3 lysine36, H3K36 in the ZnT7OE-cells, demonstrating the role of [Zn2+]Mit in epigenetic regulation of cardiomyocytes under hyperinsulinemia through histone modification. CONCLUSIONS: Overall, our data have shown an important contribution of high expression of ZnT7-OE, through its buffering and muffling capacity in cardiomyocytes, on the regulation of not only [Zn2+]i but also both [Zn2+]Mit and [Ca2+]Mit affecting mitochondria function, in part, via histone modification.


Subject(s)
Cation Transport Proteins , Hyperinsulinism , Cation Transport Proteins/metabolism , Epigenesis, Genetic , Histone Code , Histones/metabolism , Hyperinsulinism/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Zinc/metabolism , Animals , Rats
18.
Mol Cell Endocrinol ; 568-569: 111928, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37028586

ABSTRACT

Lipotoxicity contributes to insulin resistance and dysfunction of pancreatic ß-cells. Insulin promotes 3T3-L1 preadipocyte differentiation and facilitates glucose entry into muscle, adipose, and other tissues. In this study, differential gene expression was analyzed using four datasets, and taxilin gamma (TXLNG) was the only shared downregulated gene in all four datasets. TXLNG expression was significantly reduced in obese subjects according to online datasets and in high-fat diet (HFD)-induced insulin-resistant (IR) mice according to experimental investigations. TXLNG overexpression significantly improved IR induced by HFD in mouse models by reducing body weight and epididymal adipose weight, decreasing mRNA expression of pro-inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), and reducing adipocyte size. High-glucose/high-insulin-stimulated adipocytes exhibited decreased TXLNG and increased signal transducer and activator of transcription 3 (STAT3) and activating transcription factor 4 (ATF4). IR significantly decreased glucose uptake, cell surface glucose transporter type 4 (GLUT4) levels, and Akt phosphorylation, while increasing the mRNA expression levels of IL-6 and TNF-α in adipocytes. However, these changes were significantly reversed by TXLNG overexpression, while they were exacerbated by TXLNG knockdown. TXLNG overexpression had no effect on ATF4 protein levels, while ATF4 overexpression increased ATF4 protein levels. Furthermore, ATF4 overexpression notably abolished the improvements in IR adipocyte dysfunction caused by TXLNG overexpression. In conclusion, TXLNG improves IR in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity.


Subject(s)
Hyperinsulinism , Insulin Resistance , Animals , Mice , 3T3-L1 Cells , Activating Transcription Factor 4/genetics , Glucose/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Interleukin-6/metabolism , Obesity/genetics , Obesity/metabolism , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Humans
19.
Vet J ; 294: 105967, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36858344

ABSTRACT

Equine insulin dysregulation (ID) comprises amplified insulin responses to oral carbohydrates or insulin resistance, or both, which leads to sustained or periodic hyperinsulinaemia. Hyperinsulinaemia is important in horses because of its clear association with laminitis risk, and the gravity of this common sequela justifies the need for a better understanding of insulin and glucose homoeostasis in this species. Post-prandial hyperinsulinaemia is the more commonly identified component of ID and is diagnosed using tests that include an assessment of the gastrointestinal tract (GIT). There are several factors present in the GIT that either directly, or indirectly, enhance insulin secretion from the endocrine pancreas, and these factors are collectively referred to as the enteroinsular axis (EIA). A role for key components of the EIA, such as the incretin peptides glucagon-like peptide-1 and 2, in the pathophysiology of ID has been investigated in horses. By comparison, the function (and even existence) of many EIA peptides of potential importance, such as glicentin and oxyntomodulin, remains unexplored. The incretins that have been examined all increase insulin responses to oral carbohydrate through one or more mechanisms. This review presents what is known about the EIA in horses, and discusses how it might contribute to ID, then compares this to current understanding derived from the extensive studies undertaken in other species. Future directions for research are discussed and knowledge gaps that should be prioritised are suggested.


Subject(s)
Horse Diseases , Hyperinsulinism , Insulin Resistance , Metabolic Syndrome , Animals , Horses , Insulin/metabolism , Metabolic Syndrome/veterinary , Metabolic Syndrome/metabolism , Hyperinsulinism/metabolism , Hyperinsulinism/veterinary , Incretins , Glucose , Horse Diseases/metabolism
20.
J Cell Physiol ; 238(5): 1046-1062, 2023 05.
Article in English | MEDLINE | ID: mdl-36924049

ABSTRACT

Hyperinsulinemia is a critical risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine phosphate phospholyase (ETNPPL), a newly discovered metabolic enzyme that converts phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde, is abundantly expressed in liver tissue. Whether it plays a role in the regulation of hyperinsulinemia-induced IR in hepatocytes remains elusive. Here, we established an in vitro hyperinsulinemia-induced IR model in the HepG2 human liver cancer cell line and primary mouse hepatocyte via a high dose of insulin treatment. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without insulin stimulation. To explore the underlying mechanism of ETNPPL mediating hyperinsulinemia-induced IR in HepG2, we performed genome-wide transcriptional analysis using RNA sequencing (RNA-seq) to identify the downstream target gene of ETNPPL. The results showed that ETNPPL expression levels in both mRNA and protein were significantly upregulated in hyperinsulinemia-induced IR in HepG2 and primary mouse hepatocytes. Upon silencing ETNPPL, hyperinsulinemia-induced IR was ameliorated. Under normal conditions without IR in hepatocytes, overexpressing ETNPPL promotes IR, reactive oxygen species (ROS) generation, and AKT inactivation. Transcriptome analysis revealed that salt-inducible kinase 1 (SIK1) is markedly downregulated in the ETNPPL knockdown HepG2 cells. Moreover, disrupting SIK1 prevents ETNPPL-induced ROS accumulation, damage to the PI3K/AKT pathway and IR. Our study reveals that ETNPPL mediates hyperinsulinemia-induced IR through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocyte cells. Targeting ETNPPL may present a potential strategy for hyperinsulinemia-associated metabolic disorders such as type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...