Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.317
Filter
1.
Methods Mol Biol ; 2803: 205-217, 2024.
Article in English | MEDLINE | ID: mdl-38676895

ABSTRACT

Diastolic dysfunction arising from alterations in myocardial structure and/or function is a central component of several cardiovascular disorders, including heart failure with preserved ejection fraction (HFpEF). Basic research aimed at understanding underlying mechanisms contributing to the development of diastolic dysfunction has generally centered upon models of left ventricular (LV) hypertrophy arising from persistent and severe elevations in myocardial afterload (e.g., aortic banding). Mechanisms of hypertrophy-independent diastolic dysfunction, on the other hand, have received less attention, even though overt anatomic LV hypertrophy is absent in many HFpEF patients. Here, we describe the development of a novel porcine model of repetitive pressure overload (RPO) in which chronic, intermittent exposure to transient episodes of hypertension produces an increase in LV stiffness, interstitial fibrosis, cardiomyocyte hypertrophy, and capillary rarefaction without significant changes in LV mass. This model offers important insight into how diastolic dysfunction and HFpEF may develop in the absence of comorbidities, sustained hypertension, or LV hypertrophy, while also providing a useful translational research tool for investigation of novel therapeutic approaches to restore myocardial compliance and improve diastolic function.


Subject(s)
Disease Models, Animal , Hypertrophy, Left Ventricular , Animals , Swine , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Hypertension/physiopathology , Hypertension/etiology , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Myocardium/pathology , Myocardium/metabolism , Fibrosis , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
2.
J Stroke Cerebrovasc Dis ; 33(6): 107709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570059

ABSTRACT

OBJECTIVES: Reduced cardiac outflow due to left ventricular hypertrophy has been suggested as a potential risk factor for development of cerebral white matter disease. Our study aimed to examine the correlation between left ventricular geometry and white matter disease volume to establish a clearer understanding of their relationship, as it is currently not well-established. METHODS: Consecutive patients from 2016 to 2021 who were ≥18 years and underwent echocardiography, cardiac MRI, and brain MRI within one year were included. Four categories of left ventricular geometry were defined based on left ventricular mass index and relative wall thickness on echocardiography. White matter disease volume was quantified using an automated algorithm applied to axial T2 FLAIR images and compared across left ventricular geometry categories. RESULTS: We identified 112 patients of which 34.8 % had normal left ventricular geometry, 20.5 % had eccentric hypertrophy, 21.4 % had concentric remodeling, and 23.2 % had concentric hypertrophy. White matter disease volume was highest in patients with concentric hypertrophy and concentric remodeling, compared to eccentric hypertrophy and normal morphology with a trend-P value of 0.028. Patients with higher relative wall thickness had higher white matter disease volume (10.73 ± 10.29 cc vs 5.89 ± 6.46 cc, P = 0.003), compared to those with normal relative wall thickness. CONCLUSION: Our results showed that abnormal left ventricular geometry is associated with higher white matter disease burden, particularly among those with abnormal relative wall thickness. Future studies are needed to explore causative relationships and potential therapeutic options that may mediate the adverse left ventricular remodeling and its effect in slowing white matter disease progression.


Subject(s)
Hypertrophy, Left Ventricular , Leukoencephalopathies , Magnetic Resonance Imaging , Ventricular Function, Left , Ventricular Remodeling , Humans , Male , Female , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/pathology , Middle Aged , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/physiopathology , Aged , Risk Factors , Echocardiography , Predictive Value of Tests , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Retrospective Studies , Adult , White Matter/diagnostic imaging , White Matter/pathology , Risk Assessment
3.
Cardiovasc Res ; 120(5): 461-475, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38428029

ABSTRACT

Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.


Subject(s)
Aortic Valve Stenosis , Disease Models, Animal , Hypertrophy, Left Ventricular , Ventricular Function, Left , Ventricular Remodeling , Animals , Humans , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Ventricular Pressure , Species Specificity
4.
Eur Radiol ; 34(2): 1003-1015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37594523

ABSTRACT

OBJECTIVES: The analysis of myocardial deformation using feature tracking in cardiovascular MR allows for the assessment of global and segmental strain values. The aim of this study was to compare strain values derived from artificial intelligence (AI)-based contours with manually derived strain values in healthy volunteers and patients with cardiac pathologies. MATERIALS AND METHODS: A cohort of 136 subjects (60 healthy volunteers and 76 patients; of those including 46 cases with left ventricular hypertrophy (LVH) of varying etiology and 30 cases with chronic myocardial infarction) was analyzed. Comparisons were based on quantitative strain analysis and on a geometric level by the Dice similarity coefficient (DSC) of the segmentations. Strain quantification was performed in 3 long-axis slices and short-axis (SAX) stack with epi- and endocardial contours in end-diastole. AI contours were checked for plausibility and potential errors in the tracking algorithm. RESULTS: AI-derived strain values overestimated radial strain (+ 1.8 ± 1.7% (mean difference ± standard deviation); p = 0.03) and underestimated circumferential (- 0.8 ± 0.8%; p = 0.02) and longitudinal strain (- 0.1 ± 0.8%; p = 0.54). Pairwise group comparisons revealed no significant differences for global strain. The DSC showed good agreement for healthy volunteers (85.3 ± 10.3% for SAX) and patients (80.8 ± 9.6% for SAX). In 27 cases (27/76; 35.5%), a tracking error was found, predominantly (24/27; 88.9%) in the LVH group and 22 of those (22/27; 81.5%) at the insertion of the papillary muscle in lateral segments. CONCLUSIONS: Strain analysis based on AI-segmented images shows good results in healthy volunteers and in most of the patient groups. Hypertrophied ventricles remain a challenge for contouring and feature tracking. CLINICAL RELEVANCE STATEMENT: AI-based segmentations can help to streamline and standardize strain analysis by feature tracking. KEY POINTS: • Assessment of strain in cardiovascular magnetic resonance by feature tracking can generate global and segmental strain values. • Commercially available artificial intelligence algorithms provide segmentation for strain analysis comparable to manual segmentation. • Hypertrophied ventricles are challenging in regards of strain analysis by feature tracking.


Subject(s)
Artificial Intelligence , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left/physiology , Heart , Myocardium/pathology , Heart Ventricles/diagnostic imaging , Hypertrophy, Left Ventricular/pathology , Reproducibility of Results
5.
Am J Hypertens ; 37(3): 155-162, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38112655

ABSTRACT

The cardiovascular risk associated with left ventricular hypertrophy (LVH) in the community and, particularly, in the hypertensive fraction of the general population, represents the rationale for its timely and accurate identification in order to implement adequate preventive strategies. Although electrocardiography (ECG) is the first-line and most economical method of diagnosing LVH its accuracy is largely suboptimal. Over the last 70 years, dozens of different ECG criteria, mostly based on measurements of QRS voltages, have been proposed. In this long journey, a few years ago Peguero et al. developed a novel ECG voltage criterion, currently recognized as Peguero-Lo Presti (PLP) suggesting that it has greater sensitivity than traditional ECG-LVH criteria. Considering that in the last 5 years numerous studies have investigated the diagnostic value of this new index, this review aimed to summarize the data published so far on this topic focusing both on the accuracy in identifying the presence of LVH compared with imaging techniques such as echocardiography (ECHO) and magnetic resonance imaging (MRI) and the value in predicting hard outcomes. The evidence in favor of the greater diagnostic accuracy of the PLP criterion in detecting LVH, phenotyped by ECHO or MRI, and in the stratification of hard outcomes compared with traditional ECG criteria does not appear to be sufficiently proven. Given that the diagnosis of LVH by all ECG criteria (including the PLP) exclusively based on the QRS amplitude is largely imprecise, the development of new multiparametric ECG criteria based on artificial intelligence could represent a real improvement in the diagnostic capacity of the ECG.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/pathology , Artificial Intelligence , Electrocardiography/methods , Hypertension/complications , Hypertension/diagnosis , Magnetic Resonance Imaging
6.
Ter Arkh ; 95(4): 302-308, 2023 May 31.
Article in Russian | MEDLINE | ID: mdl-38158977

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease; it is characterized by left ventricular (LV) hypertrophy that cannot be explained by hemodynamic causes. It is believed that sarcomere dysfunction underlies the pathogenesis of this disease, however, only half of patients with the HCM phenotype have mutations in sarcomere-encoding genes. HCM is distinguished by both high genetic and clinical heterogeneity and therefore more studies are seeking to investigate a regulation of gene expression in HCM and how the abnormalities in this process can affect disease phenotype. One of the levels of regulation of gene expression - a post-transcriptional level - is mediated by short non-coding microRNAs that inhibit protein synthesis. AIM: To identify the correlations between levels of circulating microRNAs, previously shown to be associated with HCM, and clinical parameters of HCM patients. MATERIALS AND METHODS: Correlation analysis of miR-499a-5p, miR-454 and miR-339-5p plasma levels and clinical parameters of 33 HCM patients, examined from 2019 to 2021, has been performed. RESULTS: Variants in HCM-associated genes were found in 49% of patients. There were no clinical differences between genotype-positive and genotype-negative patients. MiR-499a-5p level correlated with LV ejection fraction, miR-454 level - with LV diastolic function parameters and miR-339-5p level - with left atrium dimension. CONCLUSION: Levels of certain circulating microRNAs correlate with echocardiographic parameters in HCM patients.


Subject(s)
Cardiomyopathy, Hypertrophic , Circulating MicroRNA , MicroRNAs , Humans , Circulating MicroRNA/genetics , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Echocardiography , Hypertrophy, Left Ventricular/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
7.
J Am Vet Med Assoc ; 261(11): 1628-1637, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37495229

ABSTRACT

OBJECTIVE: Feline hypertrophic cardiomyopathy (HCM) remains a disease with little therapeutic advancement. Rapamycin modulates the mTOR pathway, preventing and reversing cardiac hypertrophy in rodent disease models. Its use in human renal allograft patients is associated with reduced cardiac wall thickness. We sought to evaluate the effects of once-weekly delayed-release (DR) rapamycin over 6 months on echocardiographic, biochemical, and biomarker responses in cats with subclinical, nonobstructive HCM. ANIMALS: 43 client-owned cats with subclinical HCM. METHODS: Cats enrolled in this double-blinded, multicentered, randomized, and placebo-controlled clinical trial were allocated to low- or high-dose DR rapamycin or placebo. Cats underwent physical examination, quality-of-life assessment, blood pressure, hematology, biochemistry, total T4, urinalysis, N-terminal pro-B-type natriuretic peptide, and cardiac troponin I at baseline and days 60, 120, and 180. Fructosamine was analyzed at screening and day 180. Echocardiograms were performed at all time points excluding day 120. Outcome variables were compared using a repeated measures ANCOVA. RESULTS: No demographic, echocardiographic, or clinicopathologic values were significantly different between study groups at baseline, confirming successful randomization. At day 180, the primary study outcome variable, maximum LV myocardial wall thickness at any location, was significantly lower in the low-dose DR rapamycin group compared to placebo (P = .01). Oral DR rapamycin was well tolerated with no significant differences in adverse events between groups. CLINICAL RELEVANCE: Results demonstrate that DR rapamycin was well tolerated and may prevent or delay progressive LV hypertrophy in cats with subclinical HCM. Additional studies are warranted to confirm and further characterize these results.


Subject(s)
Cardiomyopathy, Hypertrophic , Cat Diseases , Hypertrophy, Left Ventricular , Sirolimus , Animals , Cats , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/veterinary , Cardiomyopathy, Hypertrophic/pathology , Cat Diseases/drug therapy , Cat Diseases/pathology , Heart , Hypertrophy, Left Ventricular/drug therapy , Hypertrophy, Left Ventricular/veterinary , Hypertrophy, Left Ventricular/pathology , Myocardium/pathology , Sirolimus/administration & dosage , Delayed-Action Preparations/administration & dosage
8.
Int J Cardiol ; 389: 131189, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37454822

ABSTRACT

Successful therapy in a cohort with early onset Danon disease (DD) highlights the potential importance of earlier disease recognition. We present experience from the largest National Pediatric Center in Russia for cardiomyopathy patients. This report focuses on identification of early clinical features of DD in the pediatric population by detailed pedigree analysis and review of medical records. RESULTS: Nine patients (3 females) were identified with DD at the Russian National Medical Research Center of Children's Health ("National Pediatric Center") aged birth to 16 years. At presentation/evaluation: all patients had left ventricular hypertrophy (LVH), ECG features of Wolff-Parkinson-White (WPW), and an increase in hepatic enzymes (particularly lactate dehydrogenase (LDH)); three had marked increase in NT-proBNP; two had HCM with impaired LV function; one had LVH with LV noncompaction; five had arrhythmia with paroxysmal supraventricular and/or ventricular tachycardia. Two teenagers died at ages 16-17 from refractory heart failure and two underwent heart transplantation. All patients were found to have a pathogenic/likely pathogenic variant in the LAMP2 gene, six patients had no family history and a de novo evolvement was documented in 4/6 of those available for genetic tested. Retrospective review related to family background and earlier clinical evaluations revealed a definitive or highly suspicious family history of DD in 3, early clinical presentation with cardiac abnormalities (ECG, echo) in 3, and cerebral, hepatic and/or neuromuscular symptoms in 5. Abnormalities were detected 9,5 months to 5,8 years, median 3,5 years prior to referral to the National Pediatric Center. CONCLUSION: The earliest clinical manifestations of Danon disease occur in the first 12 years of life with symptoms of skeletal muscle and cerebral disease, raised hepatic enzymes, and evidence of cardiac disease on ECG/echo.


Subject(s)
Cardiomyopathies , Glycogen Storage Disease Type IIb , Adolescent , Female , Humans , Child , Aged , Glycogen Storage Disease Type IIb/diagnosis , Glycogen Storage Disease Type IIb/genetics , Lysosomal-Associated Membrane Protein 2/genetics , Arrhythmias, Cardiac , Hypertrophy, Left Ventricular/pathology , Early Diagnosis
9.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835293

ABSTRACT

Left ventricular hypertrophy (LVH) refers to a complex rebuilding of the left ventricle that can gradually lead to serious complications-heart failure and life-threatening ventricular arrhythmias. LVH is defined as an increase in the size of the left ventricle (i.e., anatomically), therefore the basic diagnosis detecting the increase in the LV size is the domain of imaging methods such as echocardiography and cardiac magnetic resonance. However, to evaluate the functional status indicating the gradual deterioration of the left ventricular myocardium, additional methods are available approaching the complex process of hypertrophic remodeling. The novel molecular and genetic biomarkers provide insights on the underlying processes, representing a potential basis for targeted therapy. This review summarizes the spectrum of the main biomarkers employed in the LVH valuation.


Subject(s)
Heart Failure , Tachycardia, Ventricular , Humans , Hypertrophy, Left Ventricular/pathology , Myocardium/pathology , Heart Failure/pathology , Biomarkers , Tachycardia, Ventricular/pathology
10.
Eur J Appl Physiol ; 123(3): 547-559, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36376599

ABSTRACT

PURPOSE: Electrocardiogram (ECG) QRS voltages correlate poorly with left ventricular mass (LVM). Body composition explains some of the QRS voltage variability. The relation between QRS voltages, LVM and body composition in endurance athletes is unknown. METHODS: Elite endurance athletes from the Pro@Heart trial were evaluated with 12-lead ECG for Cornell and Sokolow-Lyon voltage and product. Cardiac magnetic resonance imaging assessed LVM. Dual energy x-ray absorptiometry assessed fat mass (FM) and lean mass of the trunk and whole body (LBM). The determinants of QRS voltages and LVM were identified by multivariable linear regression. Models combining ECG, demographics, DEXA and exercise capacity to predict LVM were developed. RESULTS: In 122 athletes (19 years, 71.3% male) LVM was a determinant of the Sokolow-Lyon voltage and product (ß = 0.334 and 0.477, p < 0.001) but not of the Cornell criteria. FM of the trunk (ß = - 0.186 and - 0.180, p < 0.05) negatively influenced the Cornell voltage and product but not the Sokolow-Lyon criteria. DEXA marginally improved the prediction of LVM by ECG (r = 0.773 vs 0.510, p < 0.001; RMSE = 18.9 ± 13.8 vs 25.5 ± 18.7 g, p > 0.05) with LBM as the strongest predictor (ß = 0.664, p < 0.001). DEXA did not improve the prediction of LVM by ECG and demographics combined and LVM was best predicted by including VO2max (r = 0.845, RMSE = 15.9 ± 11.6 g). CONCLUSION: LVM correlates poorly with QRS voltages with adipose tissue as a minor determinant in elite endurance athletes. LBM is the strongest single predictor of LVM but only marginally improves LVM prediction beyond ECG variables. In endurance athletes, LVM is best predicted by combining ECG, demographics and VO2max.


Subject(s)
Electrocardiography , Hypertrophy, Left Ventricular , Female , Humans , Male , Body Composition , Electrocardiography/methods , Heart Ventricles , Hypertrophy, Left Ventricular/pathology , Magnetic Resonance Imaging
11.
Front Endocrinol (Lausanne) ; 14: 1276664, 2023.
Article in English | MEDLINE | ID: mdl-38174329

ABSTRACT

Background: Whether fibroblast growth factor 23 (FGF23) directly induces left ventricular hypertrophy (LVH) remains controversial. Recent studies showed an association between FGF23 and the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to investigate changes in FGF23 levels and RAAS parameters and their influences on LVH. Methods: In the first experiment, male C57BL/6J mice were divided into sham and transverse aortic constriction (TAC) groups. The TAC group underwent TAC at 8 weeks of age. At 1, 2, 3, and 4 weeks after TAC, the mice were sacrificed, and blood and urine samples were obtained. Cardiac expressions of FGF23 and RAAS-related factors were evaluated, and cardiac histological analyses were performed. In the second experiment, the sham and TAC groups were treated with vehicle, angiotensin-converting enzyme (ACE) inhibitor, or FGF receptor 4 (FGFR4) inhibitor and then evaluated in the same way as in the first experiment. Results: In the early stage of LVH without chronic kidney disease, serum FGF23 levels did not change but cardiac FGF23 expression significantly increased along with LVH progression. Moreover, serum aldosterone and cardiac ACE levels were significantly elevated, and cardiac ACE2 levels were significantly decreased. ACE inhibitor did not change serum FGF23 levels but significantly decreased cardiac FGF23 levels with improvements in LVH and RAAS-related factors, while FGFR4 inhibitor did not change the values. Conclusions: Not serum FGF23 but cardiac FGF23 levels and RAAS parameters significantly changed in the early stage of LVH without chronic kidney disease. RAAS blockade might be more crucial than FGF23 blockade for preventing LVH progression in this condition.


Subject(s)
Hypertrophy, Left Ventricular , Renal Insufficiency, Chronic , Animals , Male , Mice , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Hypertrophy, Left Ventricular/pathology , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Renal Insufficiency, Chronic/pathology , Renin-Angiotensin System
12.
Cells ; 11(19)2022 09 27.
Article in English | MEDLINE | ID: mdl-36230994

ABSTRACT

Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of ß-oxidation. The decreased protein content of α/ß-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and ß-oxidation in cardiomyocytes.


Subject(s)
Hypertrophy, Left Ventricular , Lipid Metabolism , Adenosine Monophosphate/pharmacology , Animals , Diglycerides/metabolism , Fatty Acids, Nonesterified/metabolism , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Lipase/metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Protein Kinases/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Triglycerides/metabolism
13.
Kidney Int ; 102(2): 228-230, 2022 08.
Article in English | MEDLINE | ID: mdl-35870810

ABSTRACT

Excess fibroblast growth factor (FGF) 23 signaling in patients with chronic kidney disease induces left ventricular hypertrophy. In this issue, Yanucil et al. investigated the interaction of soluble klotho and heparin with FGF23 and FGF receptor isoforms. They concluded that heparin promotes the FGF23-FGF receptor isoform 4 interaction and FGF23 pathogenic effects, supporting an important role of heparin in the pathogenesis of FGF23-mediated left ventricular hypertrophy in chronic kidney disease.


Subject(s)
Glucuronidase , Renal Insufficiency, Chronic , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Heparin/adverse effects , Humans , Hydrolases , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Klotho Proteins , Receptor, Fibroblast Growth Factor, Type 4 , Receptors, Fibroblast Growth Factor , Renal Insufficiency, Chronic/complications
14.
PLoS One ; 17(6): e0269807, 2022.
Article in English | MEDLINE | ID: mdl-35696411

ABSTRACT

BACKGROUND: While patients with cardiac transthyretin amyloidosis are easily diagnosed with bone scintigraphy, the detection of cardiac light chain (AL) amyloidosis is challenging. Cardiac magnetic resonance (CMR) analyses play an essential role in the differential diagnosis of cardiomyopathies; however, limited data are available from cardiac AL-Amyloidosis. Hence, the purpose of the present study was to analyze the potential role of CMR in the detection of cardiac AL-amyloidosis. METHODS: We included 35 patients with proved cardiac AL-amyloidosis and two control groups constituted by 330 patients with hypertrophic cardiomyopathy (HCM) and 70 patients with arterial hypertension (HT), who underwent CMR examination. The phenotype and degree of left ventricular (LV) hypertrophy and the amount and pattern of late gadolinium enhancement (LGE) were evaluated. In addition, global and regional LV strain parameters were also analyzed using feature-tracking techniques. Sensitivity and specificity of several CMR parameters were analyzed in diagnosing cardiac AL-amyloidosis. RESULTS: The sensitivity and specificity of diffuse septal subendocardial LGE in diagnosing cardiac AL-amyloidosis was 88% and 100%, respectively. Likewise, the sensitivity and specificity of septal myocardial nulling prior to blood pool was 71% and 100%, respectively. In addition, a LV end-diastolic septal wall thickness ≥ 15 mm had an optimal diagnostic performance to differentiate cardiac AL-amyloidosis from HT (sensitivity 91%, specificity 89%). On the other hand, a reduced global LV longitudinal strain (< 15%) plus apical sparing (apex-to-base longitudinal strain > 2) had a very low sensitivity (6%) in detecting AL-Amyloidosis, but with very high specificity (100%). CONCLUSIONS: The findings from this study suggest that CMR could have an optimal diagnostic performance in the diagnosis of cardiac AL-amyloidosis. Hence, further larger studies are warranted to validate the findings from this study.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Immunoglobulin Light-chain Amyloidosis , Amyloid Neuropathies, Familial/pathology , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Contrast Media , Gadolinium , Humans , Hypertrophy, Left Ventricular/pathology , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Magnetic Resonance Spectroscopy , Myocardium/pathology , Predictive Value of Tests , Tomography, X-Ray Computed
15.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682624

ABSTRACT

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Echocardiography , Heart Failure/metabolism , Hypertrophy, Left Ventricular/pathology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Remodeling
16.
J Am Heart Assoc ; 11(9): e025381, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35470693

ABSTRACT

Background Left ventricular hypertrophy (LVH) has often been supposed to be associated with abnormal myocardial blood flow and resistance. The aim of this study was to evaluate and quantify the physiological and pathological changes in myocardial blood flow and microcirculatory resistance in patients with and without LVH attributable to severe aortic stenosis. Methods and Results Absolute coronary blood flow and microvascular resistance were measured using a novel technique with continuous thermodilution and infusion of saline. In addition, myocardial mass was assessed with cardiac magnetic resonance imaging. Fifty-three patients with aortic valve stenosis were enrolled in the study. In 32 patients with LVH, hyperemic blood flow per gram of tissue was significantly decreased compared with 21 patients without LVH (1.26±0.48 versus 1.66±0.65 mL·min-1·g-1; P=0.018), whereas minimal resistance indexed for left ventricular mass was significantly increased in patients with LVH (63 [47-82] versus 43 [35-63] Wood Units·kg; P=0.014). Conclusions Patients with LVH attributable to severe aortic stenosis had lower hyperemic blood flow per gram of myocardium and higher minimal myocardial resistance compared with patients without LVH.


Subject(s)
Aortic Valve Stenosis , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/pathology , Hemodynamics , Humans , Hypertrophy, Left Ventricular/pathology , Microcirculation , Myocardium/pathology
17.
J Am Heart Assoc ; 11(6): e024226, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35253475

ABSTRACT

Background This study examined the associations between quantitative optical coherence tomography angiography (OCTA) parameters and myocardial abnormalities as documented on cardiovascular magnetic resonance imaging in patients with systemic hypertension. Methods and Results We conducted a cross-sectional study of 118 adults with hypertension (197 eyes). Patients underwent cardiovascular magnetic resonance imaging and OCTA (PLEX Elite 9000, Carl Zeiss Meditec). Associations between OCTA parameters (superficial and deep retinal capillary density) and adverse cardiac remodeling (left ventricular mass, remodeling index, interstitial fibrosis, global longitudinal strain, and presence of left ventricular hypertrophy) were studied using multivariable linear regression analysis with generalized estimating equations. Of the 118 patients with hypertension enrolled (65% men; median [interquartile range] age, 59 [13] years), 29% had left ventricular hypertrophy. After adjusting for age, sex, systolic blood pressure, diabetes, and signal strength of OCTA scans, patients with lower superficial capillary density had significantly higher left ventricular mass (ß=-0.150; 95% CI, -0.290 to -0.010), higher interstitial volume (ß=-0.270; 95% CI, -0.535 to -0.0015), and worse global longitudinal strain (ß=-0.109; 95% CI, -0.187 to -0.032). Lower superficial capillary density was found in patients with hypertension with replacement fibrosis versus no replacement fibrosis (16.53±0.64 mm-1 versus 16.96±0.64 mm-1; P=0.003). Conclusions We showed significant correlations between retinal capillary density and adverse cardiac remodeling markers in patients with hypertension, supporting the notion that the OCTA could provide a non-invasive index of microcirculation alteration for vascular risk stratification in people with hypertension.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Adult , Cross-Sectional Studies , Female , Fibrosis , Fluorescein Angiography/methods , Humans , Hypertension/complications , Hypertension/pathology , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Male , Middle Aged , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Tomography, Optical Coherence/methods , Ventricular Remodeling
18.
Aging (Albany NY) ; 14(3): 1508-1528, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35157609

ABSTRACT

Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Membrane Proteins , Biomarkers/metabolism , Computational Biology , Heart Ventricles , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertension/pathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 47(2): 461-468, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178990

ABSTRACT

To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of ß-myosin heavy chain(ß-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of ß-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.


Subject(s)
Cardiomegaly , Hypertrophy, Left Ventricular , Angiotensin II/metabolism , Animals , Cardiomegaly/etiology , Cardiomegaly/genetics , Gallic Acid/analogs & derivatives , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Myocardium/pathology , Rats
20.
Front Endocrinol (Lausanne) ; 13: 1079043, 2022.
Article in English | MEDLINE | ID: mdl-36686418

ABSTRACT

Introduction: Sex hormones may play an important role in age-related cardiac remodeling. However, their impact on cardiac structure and function in females of advanced age still remains unclear. The aim of this study is to evaluate the relationship between sex hormones level and echocardiographic parameters in older women with concomitant cardiovascular diseases. Materials and Methods: The study group included 52 community-dwelling women with mean age 79.5 ± 2.8 years, consecutive patients of an outpatient geriatric clinic. In all the subjects, a transthoracic echocardiogram was performed and serum testosterone, estradiol, follicle-stimulating hormone, luteinising hormone, dehydroepiandrosterone sulphate, and cortisol levels were determined. Results: Testosterone level correlated positively with interventricular septum diastolic dimension (IVSd) (rS=0.293, p<0.05), left ventricular mass index (rS=0.285, p<0.05), E/E' ratio (rS=0.301, p<0.05), and negatively with E' (rS=-0.301, p<0.05). Estradiol level showed a positive correlation with the posterior wall dimension (rS=0.28, p<0.05). Besides, no significant correlations between clinical or echocardiographic parameters and other hormones were observed. Female subjects with diagnosed left ventricular hypertrophy (LVH) (n=34) were characterized by a significantly higher rate of hypertension (p=0.011), higher waist-to-height ratio (p=0.009), higher testosterone level (0.82 vs. 0.48 nmol/L, p=0.024), higher testosterone/estradiol ratio (16.4 vs. 9.9, p=0.021), and received more anti-hypertensive drugs (p=0.030). In a multiple stepwise logistic regression, the best determinants of LVH were the presence of hypertension (OR=6.51; 95% CI 1.62-26.1), and testosterone level (OR= 6.6; 95% CI 1.19-36.6). Conclusions: Higher serum testosterone levels may contribute to pathological cardiac remodeling, especially in hypertensive women. Estradiol, gonadotropins, DHEAS, and cortisol were not related to echocardiographic parameters.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Humans , Female , Aged , Aged, 80 and over , Hypertrophy, Left Ventricular/pathology , Hydrocortisone , Ventricular Remodeling , Gonadal Steroid Hormones , Testosterone , Estradiol
SELECTION OF CITATIONS
SEARCH DETAIL
...