Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
Endocrine ; 84(2): 745-756, 2024 May.
Article in English | MEDLINE | ID: mdl-38285410

ABSTRACT

Gonadotropin inhibitory hormone (GnIH) is essential for regulating the reproduction of mammals and inhibiting testicular activities in mice. This study aimed to explore the mechanism of GnIH on spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis of mice. Mice were subcutaneously injected with different doses of GnIH (1 µg/150 µL, 3 µg/150 µL, 6 µg/150 µL, 150 µL saline, twice daily) for 11 days. Subsequently, luteinizing hormone (LH), testosterone (T), and inhibin B (INH B) levels of peripheral blood were determined, and the expression of GnRH synthesis-related genes (GnRH-1, Kiss-1, NPY) and gonadotropin synthesis-related genes (FSH ß, LH ß, GnRH receptor) in the hypothalamus and pituitary gland were respectively detected. Additionally, the expression of steroidogenesis-related genes/proteins (P450scc, StAR and 3ß-HSD) and spermatogenesis-related proteins/genes including LH receptor (LHR), androgen receptor (AR), heat shock factor-2 (HSF-2) and INH B were analyzed using western blot and q-PCR. Results showed that GnIH treatment significantly reduced the concentration of LH in the peripheral blood. Further analysis revealed that GnIH treatment markedly reduced the expression of GnRHImRNA and Kiss-1 mRNA in the hypothalamus, and mRNA levels of FSH ß, LH ß, and GnRHR genes in the pituitary. We also observed that GnIH treatment significantly decreased T levels and expression of the P450scc, StAR, and 3ß-HSD proteins in the testis. Furthermore, GnIH treatment down-regulated LHR, AR proteins, and HSF-2 gene in the testis. Importantly, the INH B concentration of and INH ßb mRNA levels significantly declined following GnIH treatment. Additionally, GnIH treatment may induce germ cell apoptosis in the testis of mice. In conclusion, GnIH may suppress spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis in mice.


Subject(s)
Hypothalamo-Hypophyseal System , Luteinizing Hormone , Spermatogenesis , Testis , Testosterone , Animals , Male , Spermatogenesis/drug effects , Testis/drug effects , Testis/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Mice , Testosterone/blood , Luteinizing Hormone/blood , Hypothalamic Hormones/metabolism , Hypothalamic Hormones/genetics , Gonadotropin-Releasing Hormone/metabolism , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Inhibins
2.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897643

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.


Subject(s)
Hyperglycemia , Hypogonadism , Hypothalamic Hormones , Animals , Glucose , Glycolipids , Gonadotropins , Hyperphagia/complications , Hypogonadism/etiology , Hypothalamic Hormones/genetics , Male , Mice , Obesity/complications , Semen/metabolism
3.
Mol Neurobiol ; 59(1): 245-265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34665407

ABSTRACT

The melanin-concentrating hormone (MCH) system is involved in numerous functions, including energy homeostasis, food intake, sleep, stress, mood, aggression, reward, maternal behavior, social behavior, and cognition. In rodents, MCH acts on MCHR1, a G protein-coupled receptor, which is widely expressed in the brain and abundantly localized to neuronal primary cilia. Cilia act as cells' antennas and play crucial roles in cell signaling to detect and transduce external stimuli to regulate cell differentiation and migration. Cilia are highly dynamic in terms of their length and morphology; however, it is not known if cilia length is causally regulated by MCH system activation in vivo. In the current work, we examined the effects of activation and inactivation of MCH system on cilia lengths by using different experimental models and methodologies, including organotypic brain slice cultures from rat prefrontal cortex (PFC) and caudate-putamen (CPu), in vivo pharmacological (MCHR1 agonist and antagonist GW803430), germline and conditional genetic deletion of MCHR1 and MCH, optogenetic, and chemogenetic (designer receptors exclusively activated by designer drugs (DREADD)) approaches. We found that stimulation of MCH system either directly through MCHR1 activation or indirectly through optogenetic and chemogenetic-mediated excitation of MCH-neuron, caused cilia shortening, detected by the quantification of the presence of ADCY3 protein, a known primary cilia marker. In contrast, inactivation of MCH signaling through pharmacological MCHR1 blockade or through genetic manipulations - germline deletion of MCHR1 and conditional ablation of MCH neurons - induced cilia lengthening. Our study is the first to uncover the causal effects of the MCH system in the regulation of the length of brain neuronal primary cilia. These findings place MCH system at a unique position in the ciliary signaling in physiological and pathological conditions and implicate MCHR1 present at primary cilia as a potential therapeutic target for the treatment of pathological conditions characterized by impaired primary cilia function associated with the modification of its length.


Subject(s)
Caudate Nucleus/metabolism , Cilia/metabolism , Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Prefrontal Cortex/metabolism , Receptors, Somatostatin/metabolism , Animals , Caudate Nucleus/drug effects , Cilia/drug effects , Hypothalamic Hormones/genetics , Melanins/genetics , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Optogenetics , Pituitary Hormones/genetics , Prefrontal Cortex/drug effects , Pyrimidinones/pharmacology , Rats , Rats, Wistar , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Thiophenes/pharmacology
4.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209728

ABSTRACT

Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.


Subject(s)
Hypothalamus/cytology , Nerve Net/physiology , Nesting Behavior/physiology , Aggression/psychology , Animals , Behavior, Animal/physiology , Hypothalamic Hormones/genetics , Hypothalamic Hormones/physiology , Hypothalamus/physiology , Male , Melanins/genetics , Melanins/physiology , Mice , Mice, Knockout , Pituitary Hormones/genetics , Pituitary Hormones/physiology
5.
Trop Anim Health Prod ; 53(3): 355, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34106352

ABSTRACT

Components of the GH/IGF1 endocrine axis regulate growth and reproductive traits in cattle. The pro-melanin-concentrating hormone (PMCH) gene located within chromosome 5 belongs to this axis. Objective herein was to evaluate PMCH single-nucleotide polymorphisms (SNPs) as molecular markers associated with age at first calving, calving interval, and age at second calving in Angus and Brangus beef heifers raised in desert conditions. Five SNPs within the PMCH gene were included in the study. Three of these SNPs had minor allele frequency > 10% and only one SNP did not deviate from Hardy-Weinberg equilibrium. A genotype to phenotype association analyses was performed using a mixed-effects model which included phenotype as the response variable, SNP genotype, breed, year of birth and age of dam as fixed terms, and sire as a random effect. Genotypes from the SNP rs135033882 were found to be associated (P < 0.05) with all evaluated fertility traits, and the term breed resulted as a significant source of variation only for age at second calving. The allele A was the favorable allele because it decreased the age at first calving 98.6 days, the calving interval 85.3 days, and the age at second calving 183.1 days, in Angus and Brangus heifers. In conclusion, we proposed a SNP within the PMCH gene as a potential candidate marker associated with reproductive performance in Angus and Brangus beef heifers raised in a desert climate.


Subject(s)
Fertility , Hypothalamic Hormones/genetics , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Fertility/genetics , Genotype , Phenotype , Protein Precursors
6.
Sci Rep ; 11(1): 3348, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558633

ABSTRACT

Multiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


Subject(s)
Behavior, Animal , GABAergic Neurons/metabolism , Hypothalamic Hormones/metabolism , Melanins/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary Hormones/metabolism , Animals , Female , Hypothalamic Hormones/genetics , Male , Melanins/genetics , Mice , Mice, Transgenic , Oxytocin/genetics , Pituitary Hormones/genetics
7.
Gen Comp Endocrinol ; 304: 113722, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33485851

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. However, the role of GnIH (Lpxrfa) in teleosts is unknown. In this study, a transgenic zebrafish (Danio rerio) line Tg(gnih:mCherry) was developed to determine the organization of GnIH neurons in the brain. Another transgenic line, Tg(gnih:mCherry; gnrh3:eGFP), was established to determine the positional relationships between GnIH and GnRH3 neurons. In these transgenic lines, the mCherry protein was specifically expressed in GnIH neurons, and eGFP was expressed exclusively in GnRH3 neurons. We found that GnIH cell somata were restricted to the posterior periventricular nucleus (NPPv). Most GnIH neuronal processes projected to the hypothalamus, but a few extended to the posterior tuberculum, telencephalon, and olfactory bulb. GnIH neuronal processes were in close apposition with GnRH3 cell somata and processes in the preoptic-hypothalamic area but were seldom in direct contact. However, in the olfactory bulb, GnIH neuronal processes were in proximity to the terminal nerve GnRH3 cell somata. Neither GnIH cell soma nor neuronal processes were detected in the pituitary, although GnIH receptor mRNAs (npffr1l1, npffr1l2, and npffr1l3) were detected. Intraperitoneal administration of GnIH-3 peptides promoted the transcription of brain gnrh3 as well as pituitary fshß but not lhß. Thus, GnIH cell somata were specifically distributed in the NPPv, and their fibers extended to the hypothalamus and advanced to the telencephalon and olfactory bulb. We conclude that GnIH may directly stimulate terminal nerve GnRH3 neurons in the zebrafish brain.


Subject(s)
Hypothalamic Hormones , Zebrafish , Animals , Animals, Genetically Modified , Brain/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Luteinizing Hormone, beta Subunit , Neurons/metabolism , Pituitary Gland/metabolism , Zebrafish/genetics , Zebrafish/metabolism
8.
Domest Anim Endocrinol ; 74: 106486, 2021 01.
Article in English | MEDLINE | ID: mdl-32882449

ABSTRACT

Gonadotropin inhibitory hormone (GnIH), initially discovered in birds as a hypothalamic neuropeptide, inhibits the synthesis and release of gonadotropins by affecting GnRH neurons and gonadotropes. Therefore, it may be a key neuropeptide in reproduction in birds. The aim of the present study was to investigate the prepubertal, pubertal, and postpubertal localization of GnIH and changes in hypothalamic GnIH expression in British United Turkey hens. In prepubertal, pubertal, and postpubertal periods, the brains of turkey hens (n = 15) were removed after fixation. Sections (30 µm) were prepared from the entire hypothalamus and stained immunohistochemically against GnIH antibody. Gonadotropin inhibitory hormone-immunoreactive neurons were observed in the paraventricular nucleus. These neurons were significantly more abundant in the prepubertal turkeys than pubertal and postpubertal turkeys (P < 0.05). The results suggested that GnIH neurons have an important role in regulating the pubertal events in British United Turkey hens.


Subject(s)
Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Sexual Maturation/physiology , Turkeys/physiology , Animals , Female , Hypothalamic Hormones/genetics , Neurons/classification , Neurons/physiology
9.
Peptides ; 137: 170476, 2021 03.
Article in English | MEDLINE | ID: mdl-33370567

ABSTRACT

Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.


Subject(s)
Appetite/genetics , Eating/genetics , Hypothalamic Hormones/genetics , Melanins/genetics , Neuropeptides/genetics , Pituitary Hormones/genetics , Appetite/physiology , Eating/physiology , Energy Metabolism/genetics , Female , Humans , Hypothalamus , Male , Neurons/metabolism , Neurons/pathology , Neuropeptides/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Signal Transduction/genetics
10.
Neuropharmacology ; 184: 108423, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33290754

ABSTRACT

Oxytocin regulates social behaviors and has been linked to the etiology of autism and schizophrenia. Oxytocin and another hypothalamic neuropeptide, melanin concentrating hormone (MCH), share several physiological actions such as emotion, social behavior and recognition, maternal care, sexual behavior and stress, which suggests that these two systems may interact, however, how they would do it is not known. Here, we study the interactions between the oxytocin and MCH systems in behaviors related to autism and schizophrenia. Specifically, we examined the synaptic inputs of the oxytocin-to the MCH neurons. We selectively deleted oxytocin receptors (OXTR) from MCH neurons (OXTR-cKO mice) using a Cre/loxP recombinase-technology, and used rabies-mediated circuit mapping technique to reveal the changes in the direct monosynaptic inputs to MCH neurons. We examined the behavioral responses of OXTR-cKO mice. Deletion of OXTR from MCH neurons induced a significant decrease in the primary inputs received by MCH neurons from the paraventricular nucleus and the lateral hypothalamus, and from the nucleus accumbens and ventral tegmental area. While OXTR-cKO mice exhibited similar social interactions as control mice, they displayed significantly impaired social recognition memory and increased stereotypic behavior. Our study identifies a selective role for the oxytocin-MCH pathway in social recognition memory and stereotyped behavior that are relevant to psychiatric disorders such as schizophrenia and autism, and warrant further investigation of this circuit to uncover potential benefit of targeting the oxytocin-MCH circuit as a novel therapeutic target for treatment of social recognition deficits in these two disorders.


Subject(s)
Hypothalamic Hormones/deficiency , Melanins/deficiency , Neurons/metabolism , Pituitary Hormones/deficiency , Receptors, Oxytocin/deficiency , Recognition, Psychology/physiology , Social Interaction , Synapses/metabolism , Animals , Hypothalamic Hormones/genetics , Male , Melanins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxytocin/deficiency , Oxytocin/genetics , Pituitary Hormones/genetics , Receptors, Oxytocin/genetics , Synapses/genetics
11.
PLoS Genet ; 16(12): e1009244, 2020 12.
Article in English | MEDLINE | ID: mdl-33301440

ABSTRACT

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Skin Pigmentation/genetics , Animals , Hypothalamic Hormones/genetics , Hypothalamus/cytology , Hypothalamus/metabolism , Melanins/genetics , Melanocyte-Stimulating Hormones/genetics , Melanocyte-Stimulating Hormones/metabolism , Melanocytes/metabolism , Neurons/metabolism , Pituitary Hormones/genetics , Zebrafish
12.
Curr Neurol Neurosci Rep ; 20(12): 55, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33006677

ABSTRACT

PURPOSE OF THE REVIEW: Melanin-concentrating hormone (MCH)-expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation. RECENT FINDINGS: While almost all studies using "gain-of-function" approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent. Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.


Subject(s)
Hypothalamic Hormones , Humans , Hypothalamic Hormones/genetics , Melanins , Neurons , Pituitary Hormones/genetics , Sleep , Wakefulness
13.
J Photochem Photobiol B ; 211: 111993, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32818912

ABSTRACT

The present study investigates the involvement of circadian rhythm in photoperiodic expressions of GnRH-I and GnIH in the hypothalamus controlling seasonal reproduction in the Eurasian tree sparrow (Passer montanus). Groups of photosensitive birds were exposed for four weeks to resonance light dark cycles comprising of a light phase of 6 h (L) combined with dark phase of different durations (D) such that the period of LD cycles varied by 12 h increments viz. 12- (6 L/6D), 24- (6 L/18D), 36- (6 L/30D), 48- (6 L/42D), 60- (6 L/54D) and 72- (6 L/66D)h. In addition, a control group (C) was maintained under long day length (14 L/10D). Observations, recorded at the beginning and end of experiment, revealed significant testicular growth with corresponding increase in the hypothalamic expression of GnRH-I peptide but low levels of GnIH mRNA and peptide in the birds exposed to resonance cycles of 12, 36 and 60 h which were read as long days. On the other hand, birds experiencing resonance cycles of 24, 48 and 72 h read them as short days wherein they maintained their quiescent gonads and low levels of GnRH-I peptide but exhibited significant increase in GnIH mRNA and peptide expressions. Thus, sparrows responded to resonance light dark cycles differently despite the fact that each of them contained only 6 h of light. These findings suggest that an endogenous circadian rhythm is involved in photoperiodic expressions of above molecules and indicate a shift in their expressions depending upon whether the light falls in the photoinducible or non-photoinducible phase of an endogenous circadian rhythm.


Subject(s)
Circadian Rhythm/physiology , Gene Expression Regulation/physiology , Gonadotropin-Releasing Hormone/genetics , Hypothalamic Hormones/genetics , Protein Precursors/genetics , Animals , Gonadotropin-Releasing Hormone/physiology , Hypothalamic Hormones/physiology , Male , Photoperiod , Protein Precursors/physiology , RNA, Messenger/metabolism , Reproduction , Seasons , Sparrows , Time Factors
14.
Gen Comp Endocrinol ; 298: 113581, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32800773

ABSTRACT

We investigated the effects of tank brightness on body color, growth, and endocrine systems of rainbow trout (Oncorhynchus mykiss). Five different tank colors that produce varying levels of brightness were used, including black, dark gray [DG], light gray [LG], white, and blue. The fish were reared in these tanks for 59 days under natural photoperiod and water temperature. The body color was affected by tank brightness, such that body color brightness was correlated with tank brightness (white-housed ≥ LG-housed ≥ DG-housed ≥ blue-housed ≥ black-housed). No difference in somatic growth was observed among the fish reared in the five tanks. The mRNA levels of melanin-concentrating hormone (mch1) was higher in white-housed fish than those in the other tanks, and the mRNA levels of proopiomelanocortins (pomc-a and pomc-b) were higher in fish housed in a black tank than those in other tanks. mRNA level of somatolactin, a member of growth hormone family, was higher in black-housed fish than those in white-housed fish. The mRNA levels of mch1 and mch2 in blue-housed fish were similar to those in black-housed fish, while the mRNA levels of pomc-a and pomc-b in blue-housed fish were similar to those in white-housed fish. The current results suggest that tank color is not related to fish growth, therefore any color of conventional rearing tank can be used to grow fish. Moreover, the association between somatolactin with body color changes is suggested in addition to the role of classical MCH and melanophore stimulating hormone derived from POMC.


Subject(s)
Endocrine System/metabolism , Oncorhynchus mykiss/growth & development , Pigmentation , Animals , Color , Growth Hormone/genetics , Growth Hormone/metabolism , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Melanins/genetics , Melanins/metabolism , Melanocyte-Stimulating Hormones/genetics , Melanocyte-Stimulating Hormones/metabolism , Oncorhynchus mykiss/genetics , Pituitary Hormones/genetics , Pituitary Hormones/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Prolactin/genetics , Prolactin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Nutr Neurosci ; 23(10): 824-837, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32558632

ABSTRACT

Background: In the current study, we aimed to evaluate the interaction between dietary Non-Enzymatic Antioxidant Capacity (NEAC) and rs17782313 polymorphism on hypothalamic hormones and cardio-metabolic risk factors. Methods: A total of 287 subjects (aged 20-50 years, 147 males and 140 females) enrolled in the cross-sectional study. Dietary NEAC was assessed using databases of NEAC measurements compiled from outcomes for three different analyses: oxygen radical absorbance capacity (ORAC), ferric reducing-antioxidant power (FRAP), and total radical-trapping antioxidant parameter (TRAP) and genotyping for the near MC4R rs17782313 was carried out by Polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) method. Results: The significant interactions were found between adherence to the dietary NEAC and MC4R rs17782313 in relation to high-density lipoprotein-cholesterol (HDL-C), glucose, α-melanocyte stimulating hormone (α-MSH), insulin and quantitative insulin sensitivity check index (QUICKI) (P Interaction = 0.03, 0.01, 0.04, 0.04 and 0.04, respectively). In homozygous subjects for the minor allele, the serum insulin level and QUICKI in participants with the highest adherence to TRAP were significantly higher than those with the lowest adherence (p < 0.001). There was a significant inverse association between high ORAC score and risk of metabolic syndrome even after adjusting for potential confounders (OR: 0.33; 95%CI:0.13-0.81) and also a significant inverse association between high NEAC (ORAC, FRAP and TRAP assays) score and high triglyceride (TG) level was found in obese adults. Conclusion: In conclusion, our study found for the first time that the NEAC significantly interacts with the rs17782313 genotypes to influence several metabolic risk factors in obesity.


Subject(s)
Cardiometabolic Risk Factors , Hypothalamic Hormones/metabolism , Obesity/metabolism , Oxygen Radical Absorbance Capacity , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Adult , Cross-Sectional Studies , Female , Genotype , Humans , Hypothalamic Hormones/genetics , Iran , Male , Middle Aged , Obesity/epidemiology , Obesity/genetics , Polymorphism, Single Nucleotide , Young Adult
16.
eNeuro ; 7(2)2020.
Article in English | MEDLINE | ID: mdl-32303567

ABSTRACT

Hypothalamic orexin (hypocretin, HCRT) deficiency causes sleep disorder narcolepsy with cataplexy in humans and murine. As another integral group of sleep/wake-regulating neurons in the same brain area, the melanin-concentrating hormone (MCH) neurons' involvement in cataplexy remains ambiguous. Here we used the live animal deep-brain calcium (Ca2+) imaging tool to record MCH neuron dynamics during cataplexy by expressing calcium sensor GCaMP6s into genetically defined MCH neurons in orexin knock-out mice, which are a model of human narcolepsy. Similar to wild-type mice, MCH neurons of the narcoleptic mice displayed significantly higher Ca2+ transient fluorescent intensity during rapid eye movement (REM) sleep and active waking (AW) episodes compared with non-REM (NREM) sleep. Moreover, MCH neurons displayed significantly lower Ca2+ signals during cataplexy. Importantly, a pre-cataplexy elevation of Ca2+ signals from MCH neurons was not a prerequisite for cataplexy initiation. Our results demonstrated the inactivation status of MCH neurons during cataplexy and suggested that MCH neurons are not involved in the initiation and maintenance of cataplexy in orexin knock-out mice.


Subject(s)
Cataplexy , Hypothalamic Hormones , Narcolepsy , Animals , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Mice , Neurons/metabolism , Orexins/metabolism , Sleep, REM
17.
Mol Biol Rep ; 47(5): 3281-3290, 2020 May.
Article in English | MEDLINE | ID: mdl-32253704

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is an RFamide peptide, and its role in reproduction is well studied from fish to mammals, but very few reports are available about the function of GnIH during larval development. In this study, we examined the GnIH and GnIH receptors (GnIHRs) expression from embryogenesis to adult stage and tissue-specific expression in adult Catla catla using quantitative real-time (qRT) PCR. The qRT PCR analysis of GnIH mRNA during ontogenetic development showed the increasing trend from early developmental stages to the adult stage with the highest expression in 24 months fish. However, the expression of two GnIH receptors, GnIHR1 and GnIHR2 also increased from larval stages to the adults with a peak at 17 days post-hatching, while GnIHR3 showed the higher mRNA expression during embryogenesis and then decreasing gradually. Tissue distribution analysis of GnIH showed the highest mRNA expression of GnIH in the brain, followed by gonads of both the sexes. GnIHR1 and GnIHR2 were also highly expressed in the brain and gonads of both the sexes, while GnIHR3 showed the highest expression in gonads of both the sexes without any expression in the brain. These results suggest that the brain is the primary site of action for GnIH, GnIHR1 and GnIHR2, while gonads for GnIHR3.


Subject(s)
Carps/embryology , Carps/genetics , Neuropeptides/genetics , Animals , Carps/metabolism , Cyprinidae/genetics , Cyprinidae/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Glycoproteins/metabolism , Gonadotropins/metabolism , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Larva/genetics , Larva/metabolism , Male , Neuropeptides/metabolism , Receptors, Gonadotropin/genetics , Receptors, Gonadotropin/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
J Exp Zool A Ecol Integr Physiol ; 333(4): 214-229, 2020 04.
Article in English | MEDLINE | ID: mdl-32039555

ABSTRACT

The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.


Subject(s)
Glycoproteins/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/physiology , Putrescine/pharmacology , Animals , Cell Line , Estrous Cycle/drug effects , Estrous Cycle/physiology , Female , Follicle Stimulating Hormone , Gene Expression Regulation/drug effects , Glycoproteins/genetics , Gonadotropin-Releasing Hormone/genetics , Hypothalamic Hormones/genetics , Luteinizing Hormone , Neurons/metabolism , Ovary/drug effects , Protein Transport , Rats , Rats, Wistar , Uterus/drug effects
19.
Gen Comp Endocrinol ; 285: 113266, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31493394

ABSTRACT

In the present study, the effects of photic environments, such as background color (white and black) and chromatic lights (blue, green, and red), on body color and gene expressions of melanin-concentrating hormone (mch) in the brain and proopiomelanocortin (pomc) in the pituitary, as well as the roles of the eyes and brain as mediators of ambient light to these genes, were examined in goldfish (Carassius auratus). Body color of goldfish exposed to fluorescent light (FL) under white background (WBG) was paler than those under black background (BBG). Gene expression levels for mch and pomc were reciprocally different depending on background color; under WBG, mRNA levels of mch and pomc were high and low, respectively, while under BBG, these levels were reversed. mch and pomc mRNA expressions of the fish exposed to chromatic light from LED were primarily similar to those exposed to FL, while blue light stimulated the expressions of mch and pomc. Ophthalmectomized goldfish exposed to FL or blue light showed minimum expression levels of mch gene, suggesting that eyes are the major mediator of ambient light for mch gene expression. Contrastingly, mRNA expressions of pomc in ophthalmectomized goldfish exposed to FL were different from those of intact goldfish. These results suggest that eyes play a functional role in mediating ambient light to regulate pomc gene expression. Since ophthalmectomy caused an increase in pomc mRNA contents in the fish exposed to blue light, we suggest that the brain is an additional mediator to regulate pomc gene expression.


Subject(s)
Gene Expression Regulation , Goldfish/genetics , Hypothalamic Hormones/genetics , Light , Melanins/genetics , Pigmentation/genetics , Pigmentation/radiation effects , Pituitary Hormones/genetics , Pro-Opiomelanocortin/genetics , Animals , Brain/metabolism , Brain/radiation effects , Color , Gene Expression Regulation/radiation effects , Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Gland/metabolism , Pituitary Gland/radiation effects , Pituitary Hormones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Nat Commun ; 10(1): 4923, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664021

ABSTRACT

Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity. Furthermore, these effects are not secondary to either impaired timing accuracy, altered activity, or increased food motivation, consistent with a specific role for vHP MCH signaling in the regulation of impulse control. Results from additional functional connectivity and neural pathway tracing analyses implicate the nucleus accumbens as a putative downstream target of vHP MCH1 receptor-expressing neurons. Collectively, these data reveal a specific neural circuit that regulates impulsivity and provide evidence of a novel function for MCH on behavior.


Subject(s)
Hippocampus/metabolism , Hypothalamic Area, Lateral/metabolism , Hypothalamic Hormones/metabolism , Impulsive Behavior , Melanins/metabolism , Pituitary Hormones/metabolism , Animals , Hypothalamic Hormones/genetics , Male , Melanins/genetics , Neural Pathways , Neurons/metabolism , Nucleus Accumbens/metabolism , Pituitary Hormones/genetics , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...