Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Proteins ; 91(11): 1510-1524, 2023 11.
Article in English | MEDLINE | ID: mdl-37449559

ABSTRACT

The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Oxygen/metabolism , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Prolyl Hydroxylases , Protein Isoforms
2.
Electrophoresis ; 43(15): 1601-1610, 2022 08.
Article in English | MEDLINE | ID: mdl-35405037

ABSTRACT

Prolyl hydroxylase domain 2 (PHD2) is a key enzyme regulating the expression of hypoxia inducible factor (HIF). Its inhibitors can improve the expression of HIF and downstream genes, which can treat hypoxia-related diseases. Therefore, the establishment of a reliable PHD2 inhibitors screening method is of great significance for the drug development of hypoxia-related diseases. In this work, an accurate, rapid, and simple screening method for PHD2 inhibitors was introduced by capillary zone electrophoresis (CZE). In order to improve the detection sensitivity, the derivative reaction of α-ketoglutaric acid (α-OG) and 1,2-diaminobenzene (OPD) was used to enhance the UV absorption of α-OG (the substrate in the enzymatic reaction). The CZE method selected 20 mM Na2 B4 O7 buffer (pH 9.0) as the separation buffer, +25 kV as the separation voltage, 25°C as the cartridge temperature, and 210 nm as the detection wavelength. Under this condition, the analysis of a single sample can be realized within 9 min. Compared with the existing reported methods, the present work can directly screen the PHD2 inhibitory activity of traditional Chinese medicine (TCM) extracts, which is of significance for the target-purification of bioactive individual compounds from TCMs. Under the optimal conditions, the PHD2 inhibitor screening platform was successfully established, and it was found that 70% methanol/water extracts of Astragali Radix and Codonopsis pilosula had good PHD2 inhibitory activity. Furthermore, the present work provides a novel approach for screening the PHD2 inhibitory activity of TCM extracts and the discovery of anti-hypoxia bioactive compounds.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Medicine, Chinese Traditional , Electrophoresis, Capillary , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism
3.
Gut Microbes ; 13(1): 1938380, 2021.
Article in English | MEDLINE | ID: mdl-34190032

ABSTRACT

The gut microbiota is essential for human health. Microbial supply of short-chain fatty acids (SCFAs), particularly butyrate, is a well-established contributor to gut homeostasis and disease resistance. Reaching millimolar luminal concentrations, butyrate is sequestered and utilized in the colon as the favored energy source for intestinal epithelia. Given the steep oxygen gradient across the anoxic lumen and the highly oxygenated lamina propria, the colon provides a particularly interesting environment to study oxygen sensing. Previous studies have shown that the transcription factor hypoxia-inducible factor (HIF) is stabilized in healthy colonic epithelia. Here we show that butyrate directly inhibits HIF prolyl hydroxylases (PHDs) to stabilize HIF. We find that butyrate stabilizes HIF in vitro despite eliminating ß-oxidation and resultant oxygen consumption. Using recombinant PHD protein in combination with nuclear magnetic resonance and enzymatic biochemical assays, we identify butyrate to bind and function as a unique, noncompetitive inhibitor of PHDs relative to other SCFAs. Butyrate inhibited PHD with a noncompetitive Ki of 5.3 ± 0.5 mM, a physiologically relevant concentration. We also confirm that microbiota-derived butyrate is necessary to stabilize HIF in mice colonic tissue through antibiotic-induced butyrate depletion and reconstitution experiments. Our results suggest that the co-evolution of mammals and mutualistic microbiota has selected for butyrate to impact a critical gene regulation pathway that can be extended beyond the mammalian gut. As PHDs are a major target for drug development in the stabilization of HIF, butyrate holds great potential as a well-tolerated endogenous inhibitor with far-reaching therapeutic impact.


Subject(s)
Bacteria/metabolism , Butyrates/chemistry , Colon/microbiology , Gastrointestinal Microbiome , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Prolyl-Hydroxylase Inhibitors/chemistry , Animals , Bacteria/classification , Bacteria/genetics , Butyrates/metabolism , Colon/enzymology , Colon/metabolism , Fatty Acids, Volatile/metabolism , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxygen/metabolism , Prolyl-Hydroxylase Inhibitors/metabolism
4.
J Med Chem ; 64(11): 7189-7209, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34029087

ABSTRACT

Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.


Subject(s)
Mixed Function Oxygenases/metabolism , Oxygen/metabolism , Repressor Proteins/metabolism , Asparagine/metabolism , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , I-kappa B Proteins/metabolism , Mixed Function Oxygenases/antagonists & inhibitors , Oxygen/chemistry , Repressor Proteins/antagonists & inhibitors , Substrate Specificity , p300-CBP Transcription Factors/chemistry , p300-CBP Transcription Factors/metabolism
5.
Sci Rep ; 10(1): 21964, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319810

ABSTRACT

Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein-protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Peptides, Cyclic/chemistry , Amino Acid Sequence , Crystallization , Humans , Ligands , Models, Molecular , Protein Binding , Sequence Homology, Amino Acid
6.
Genome Med ; 12(1): 32, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32228647

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of renal cancer. With currently available therapies, cure of advanced and metastatic ccRCC is achieved only in rare cases. Here, we developed a workflow integrating different -omics technologies to identify ccRCC-specific HLA-presented peptides as potential drug targets for ccRCC immunotherapy. METHODS: We analyzed HLA-presented peptides by MS-based ligandomics of 55 ccRCC tumors (cohort 1), paired non-tumor renal tissues, and 158 benign tissues from other organs. Pathways enriched in ccRCC compared to its cell type of origin were identified by transcriptome and gene set enrichment analyses in 51 tumor tissues of the same cohort. To retrieve a list of candidate targets with involvement in ccRCC pathogenesis, ccRCC-specific pathway genes were intersected with the source genes of tumor-exclusive peptides. The candidates were validated in an independent cohort from The Cancer Genome Atlas (TCGA KIRC, n = 452). DNA methylation (TCGA KIRC, n = 273), somatic mutations (TCGA KIRC, n = 392), and gene ontology (GO) and correlations with tumor metabolites (cohort 1, n = 30) and immune-oncological markers (cohort 1, n = 37) were analyzed to characterize regulatory and functional involvements. CD8+ T cell priming assays were used to identify immunogenic peptides. The candidate gene EGLN3 was functionally investigated in cell culture. RESULTS: A total of 34,226 HLA class I- and 19,325 class II-presented peptides were identified in ccRCC tissue, of which 443 class I and 203 class II peptides were ccRCC-specific and presented in ≥ 3 tumors. One hundred eighty-five of the 499 corresponding source genes were involved in pathways activated by ccRCC tumors. After validation in the independent cohort from TCGA, 113 final candidate genes remained. Candidates were involved in extracellular matrix organization, hypoxic signaling, immune processes, and others. Nine of the 12 peptides assessed by immunogenicity analysis were able to activate naïve CD8+ T cells, including peptides derived from EGLN3. Functional analysis of EGLN3 revealed possible tumor-promoting functions. CONCLUSIONS: Integration of HLA ligandomics, transcriptomics, genetic, and epigenetic data leads to the identification of novel functionally relevant therapeutic targets for ccRCC immunotherapy. Validation of the identified targets is recommended to expand the treatment landscape of ccRCC.


Subject(s)
Carcinoma, Renal Cell/immunology , Genomics/methods , HLA Antigens/immunology , Immunotherapy/methods , Kidney Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Binding Sites , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Female , HLA Antigens/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/immunology , Kidney/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Ligands , Lymphocyte Activation , Male , Middle Aged , Mutation , Peptide Fragments/immunology , Protein Binding , Transcriptome
7.
Mol Biotechnol ; 62(2): 111-118, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31760602

ABSTRACT

The prolyl hydroxylase 3 (PHD3) protein is less abundant in normal oxygen conditions (normoxia) but increases under deficient oxygen condition (hypoxia). Since cancerous cells often thrive in hypoxic conditions and predominantly express the Pyruvate kinase isoforms 2 (PKM2), the PHD3/PKM2 interaction might be particularly important in cancer development. In the present study, the PHD3/PKM2 complex was co-expressed and purified by size-exclusion chromatography. The interaction of PHD3 with PKM2 was confirmed in Native gel as well as western blot analysis. The PHD3/PKM2 complex formed discreet crystals under suitable conditions, and diffraction data revealed that crystal belonged to the P1 space group with 3.0 Å resolution. This is the first crystal report of PHD3/PKM2 complex as well as this study demonstrates a direct physical binding through protein-protein interaction. The structural analysis of complex will provide the information regarding the amino acid residues critical for the catalytic mechanism. Based on the structural information thus obtained, pharmacological interference with the PHD3/PKM2 interaction could be used as a novel strategy to reduce the cancer progression.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Cell Hypoxia , Gene Expression , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/isolation & purification , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Models, Molecular , Pyruvate Kinase/genetics , Pyruvate Kinase/isolation & purification
8.
J Med Chem ; 62(16): 7583-7588, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31244107

ABSTRACT

HIF prolyl hydroxylase 2 (PHD2) inhibitors represent a novel approach for treating HIF-related diseases. This study reports the first application of photoremovable protecting group to the photoactivatable inhibitor (7) of PHD2. It allows the inhibitory activity for PHD2 to be controlled by light irradiation, subsequently stabilizing HIF and promoting expression of the target gene. Light activation to stabilize HIF offers promising potentials for the tissue-specific therapies for HIF-related disease by light irradiation onto target tissues.


Subject(s)
Gene Expression Regulation/radiation effects , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Light , Prolyl-Hydroxylase Inhibitors/pharmacology , Cell Line, Tumor , Enzyme Stability/radiation effects , Erythropoietin/genetics , Erythropoietin/metabolism , HEK293 Cells , Humans , Hypoxia , Hypoxia-Inducible Factor 1/chemistry , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Models, Chemical , Molecular Structure , Prolyl-Hydroxylase Inhibitors/chemistry
9.
Bioorg Med Chem ; 27(12): 2405-2412, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30737136

ABSTRACT

The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.


Subject(s)
Procollagen-Proline Dioxygenase/chemistry , Prolyl-Hydroxylase Inhibitors/chemistry , Enzyme Assays , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Ketoglutaric Acids/chemistry , Oligopeptides/chemistry , Phycodnaviridae/enzymology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Chem Commun (Camb) ; 55(8): 1020-1023, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30452037

ABSTRACT

We describe covalently binding modulators of the activity of human prolyl hydroxylase domain 2 (PHD2) and studies towards a strategy for photocapture of PHD2 substrates. Reversible active site binding of electrophile bearing compounds enables susbsequent covalent reaction with a lysine residue (K408) in the flexible C-terminal region of PHD2 to give a modified protein that retains catalytic activity.


Subject(s)
Enzyme Inhibitors/metabolism , Hippurates/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Azides/chemistry , Azides/radiation effects , Catalysis , Catalytic Domain , Enzyme Inhibitors/chemistry , HeLa Cells , Hippurates/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Ligands , Lysine/chemistry , Protein Binding , Ultraviolet Rays
11.
Chembiochem ; 19(21): 2262-2267, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30144273

ABSTRACT

In animals, the response to chronic hypoxia is mediated by upregulation of the α,ß-heterodimeric hypoxia-inducible factors (HIFs). Levels of HIFα isoforms, but not HIFß, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for the human HIF-1/2α isoforms and their two oxygen-dependent degradation domains (ODDs) are proposed. We report kinetic and NMR analyses of the ODD selectivity of the catalytic domain of wild-type PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala scanning and "hybrid" ODD peptides imply that the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results indicate how the PHDs achieve selectivity for HIFα ODDs and might be of use in identifying substrate-selective PHD inhibitors.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Catalytic Domain , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Isoforms/metabolism , Substrate Specificity
13.
J Med Chem ; 61(12): 5332-5349, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29856623

ABSTRACT

As a gene associated with anemia, the erythropoiesis gene is physiologically expressed under hypoxia regulated by †hypoxia-inducing factor-α (HIF-α). Thus, stabilizing HIF-α is a potent strategy to stimulate the expression and secretion of erythropoiesis. In this study, we applied click chemistry to the discovery of HIF prolyl hydroxylase 2 (HIF-PHD2) inhibitors for the first time, and a series of triazole compounds showed preferable inhibitory activity in fluorescence polarization assays. Of particular note was the orally active HIF-PHD inhibitor 15i (IC50 = 62.23 nM), which was almost ten times more active than the phase III drug FG-4592 (IC50 = 591.4 nM). Furthermore, it can upregulate the hemoglobin of cisplatin-induced anemia mice (120 g/L) to normal levels (160 g/L) with no apparent toxicity observed in vivo. These results confirm that triazole compound 15i is a promising candidate for the treatment of renal anemia.


Subject(s)
Anemia/drug therapy , Glycine/analogs & derivatives , Glycine/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Prolyl-Hydroxylase Inhibitors/chemistry , Prolyl-Hydroxylase Inhibitors/pharmacology , Triazoles/chemistry , Administration, Oral , Anemia/chemically induced , Animals , Cisplatin , Click Chemistry , Erythropoietin/genetics , Female , Fluorescence Polarization , Glycine/pharmacology , Hemoglobins/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Prolyl-Hydroxylase Inhibitors/administration & dosage , Prolyl-Hydroxylase Inhibitors/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazoles/pharmacology
14.
Methods Mol Biol ; 1742: 15-25, 2018.
Article in English | MEDLINE | ID: mdl-29330786

ABSTRACT

Kinetic analyses of HIF prolyl 4-hydroxylases (HIF-P4Hs) allow determination of substrate, cosubstrate and cofactor requirements, analysis of the reaction rate, and inhibitory properties of the isoenzymes in vitro. Here we describe an assay measuring the substrate hydroxylation-coupled decarboxylation of radioactive 2-oxoglutarate to radioactive carbon dioxide as a fast, efficient, and diverse method to analyze the enzyme kinetics of HIF-P4Hs.


Subject(s)
Biochemistry/methods , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Carbon Radioisotopes/metabolism , Decarboxylation , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoenzymes/chemistry , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Kinetics
15.
Nat Commun ; 8(1): 1489, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29138400

ABSTRACT

Combinatorial polyvalent contacts of histone-binding domains or readers commonly mediate localization and activities of chromatin-associated proteins. A pair of readers, the PHD fingers of the protein CHD4, has been shown to bivalently recognize histone H3 tails. Here we describe a mechanism by which these linked but independent readers bind to the intact nucleosome core particle (NCP). Comprehensive NMR, chemical reactivity, molecular dynamics, and fluorescence analyses point to the critical roles of intra-nucleosomal histone-DNA interactions that reduce the accessibility of H3 tails in NCP, the nucleosomal DNA, and the linker between readers in modulating nucleosome- and/or histone-binding activities of the readers. We show that the second PHD finger of CHD4 initiates recruitment to the nucleosome, however both PHDs are required to alter the NCP dynamics. Our findings reveal a distinctive regulatory mechanism for the association of paired readers with the nucleosome that provides an intricate balance between cooperative and individual activities of the readers.


Subject(s)
Histones/metabolism , Nucleosomes/metabolism , Binding Sites , DNA/metabolism , Fluorescence Polarization , Histones/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Magnetic Resonance Spectroscopy , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Molecular Dynamics Simulation , Nucleosomes/chemistry
16.
Biosci Rep ; 37(3)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28592559

ABSTRACT

Prolyl hydroxylases (PHDs) down-regulate the level of hypoxia-inducible factors (HIFs) by hydroxylating key proline residues that trigger the degradation of the protein and affect the cell and its ability to respond to hypoxic stress. Several small molecule PHD inhibitors are now in various preclinical and clinical stages for the treatment of anemia. The present study provides a detail kinetic analysis for some of these inhibitors. The data generated in the present study suggest that these compounds are reversible and compete directly with the co-substrate, 2-oxoglutarate (2-OG) for binding at the enzyme active site. Most of these compounds are pan PHD inhibitors and exhibit a time-dependent inhibition (TDI) mechanism due to an extremely slow dissociation rate constant, koff, and a long residence time.


Subject(s)
Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Catalytic Domain , Enzyme Inhibitors/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Kinetics , Protein Binding , Small Molecule Libraries/chemistry
17.
J Med Chem ; 60(13): 5663-5672, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28594552

ABSTRACT

Herein we describe the identification of 4-{[1,2,4]triazolo[1,5-a]pyridin-5-yl}benzonitrile-based inhibitors of the hypoxia-inducible factor prolylhydroxylase domain-1 (PHD-1) enzyme. These inhibitors were shown to possess a novel binding mode by X-ray crystallography, in which the triazolo N1 atom coordinates in a hitherto unreported monodentate interaction with the active site Fe2+ ion, while the benzonitrile group accepts a hydrogen-bonding interaction from the side chain residue of Asn315. Further optimization led to potent PHD-1 inhibitors with good physicochemical and pharmacokinetic properties.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/pharmacokinetics , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Pyridines/pharmacokinetics , Triazoles/pharmacokinetics
18.
Mol Cell ; 63(6): 1006-20, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27635760

ABSTRACT

While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Leukemia, Myeloid, Acute/metabolism , Proline/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/genetics , Amino Acid Sequence , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred NOD , Models, Molecular , Neoplasm Transplantation , Oxidation-Reduction , Proline/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Structural Homology, Protein , Survival Analysis
19.
Nat Commun ; 7: 12673, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27561929

ABSTRACT

The response to hypoxia in animals involves the expression of multiple genes regulated by the αß-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia/metabolism , Animals , Cells, Cultured , Crystallography, X-Ray , Fibroblasts , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Molecular Dynamics Simulation , Neoplasms/genetics , Oxygen/metabolism , Polycythemia/congenital , Polycythemia/genetics , Proline/metabolism , Protein Binding/genetics , Protein Domains/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship
20.
Sci Rep ; 6: 27382, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27263528

ABSTRACT

HIF-1 (hypoxia-inducible factor-1) regulates the expression of more than 70 genes involved in angiogenesis, tumor growth, metastasis, chemoresistance, and radioresistance. Thus, there is growing interest in using HIF-1 inhibitors as anticancer drugs. Docetaxel, a Food and Drug Administration-approved anticancer drug, is reported to enhance HIF-1α degradation. Here, we investigated the molecular mechanism underlying docetaxel-induced HIF-1α degradation and cancer cell death under hypoxic conditions. Docetaxel pretreatment enhanced the polyubiquitination and proteasome-mediated degradation of HIF-1α, and increased cancer cell death under hypoxic conditions. Docetaxel also activated the prolyl hydroxylase, PHD1, in hypoxia, and pharmacological inhibition or siRNA-mediated knockdown of PHD1 prevented docetaxel-induced HIF-1α degradation and cancer cell death. Additionally, siRNA-mediated JNK2 knockdown blocked docetaxel-induced HIF-1α degradation and cancer cell death by inhibiting PHD1 activation. A luciferase reporter assay revealed that inhibition of the JNK2/PHD1 signaling pathway significantly increased the transcriptional activity of HIF-1 in docetaxel-treated cancer cells under hypoxia. Consistent with these results, docetaxel-treated JNK2-knockdown tumors grew much faster than control tumors through inhibition of docetaxel-induced PHD1 activation and degradation of HIF-1α. Our results collectively show that, under hypoxic conditions, docetaxel induces apoptotic cell death through JNK2/PHD1 signaling-mediated HIF-1α degradation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Death/drug effects , Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Neoplasms/pathology , Signal Transduction/drug effects , Taxoids/pharmacology , Amino Acid Sequence , Cell Line, Tumor , Docetaxel , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Mitogen-Activated Protein Kinase 9/genetics , Neoplasms/enzymology , Neoplasms/metabolism , Proteolysis , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...