Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.629
Filter
1.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727309

ABSTRACT

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Subject(s)
Cholesterol , Endothelial Cells , Inflammation , Animals , Humans , Endothelial Cells/metabolism , Mice , Inflammation/pathology , Inflammation/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Arteries/metabolism , Arteries/pathology , Transcriptome/genetics , Aorta/metabolism , Aorta/pathology , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , I-kappa B Kinase/metabolism , Male , NF-kappa B/metabolism
2.
Front Immunol ; 15: 1375168, 2024.
Article in English | MEDLINE | ID: mdl-38690287

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma. The HTLV-1 Tax constitutively activates nuclear factor-κB (NF-κB) to promote the survival and transformation of HTLV-1-infected T cells. Despite extensive study of Tax, how Tax interacts with host factors to regulate NF-κB activation and HTLV-1-driven cell proliferation is not entirely clear. Here, we showed that overexpression of Poly (rC)-binding protein 1 (PCBP1) promoted Tax-mediated IκB kinase (IKK)-NF-κB signaling activation, whereas knockdown of PCBP1 attenuated Tax-dependent IKK-NF-κB activation. However, Tax activation of HTLV-1 long terminal repeat was unaffected by PCBP1. Furthermore, depletion of PCBP1 led to apoptosis and reduced proliferation of HTLV-1-transformed cells. Mechanistically, PCBP1 interacted and co-localized with Tax in the cytoplasm, and PCBP1 KH3 domain was indispensable for the interaction between PCBP1 and Tax. Moreover, PCBP1 facilitated the assembly of Tax/IKK complex. Collectively, our results demonstrated that PCBP1 may exert an essential effect in Tax/IKK complex combination and subsequent NF-κB activation, which provides a novel insight into the pathogenetic mechanisms of HTLV-1.


Subject(s)
DNA-Binding Proteins , Gene Products, tax , Heterogeneous-Nuclear Ribonucleoproteins , Human T-lymphotropic virus 1 , NF-kappa B , RNA-Binding Proteins , Humans , Gene Products, tax/metabolism , NF-kappa B/metabolism , Human T-lymphotropic virus 1/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Signal Transduction , HEK293 Cells , Protein Binding , Cell Proliferation , HTLV-I Infections/metabolism , HTLV-I Infections/virology , Apoptosis , I-kappa B Kinase/metabolism , Host-Pathogen Interactions
3.
Bioconjug Chem ; 35(5): 638-652, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38669628

ABSTRACT

Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/ß has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/ß inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.


Subject(s)
Acute Lung Injury , I-kappa B Kinase , Lipopolysaccharides , Peptides, Cyclic , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Mice , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Humans , NF-kappa B/metabolism , Protein Binding , Cyclization
4.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38643862

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Subject(s)
Acute Lung Injury , Coumaric Acids , Epithelial Sodium Channels , Lipopolysaccharides , Mice, Inbred C57BL , Network Pharmacology , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Coumaric Acids/pharmacology , Male , Epithelial Sodium Channels/metabolism , Lipopolysaccharides/toxicity , Mice , Sodium/metabolism , Disease Models, Animal , Signal Transduction/drug effects , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism
5.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38610069

ABSTRACT

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Subject(s)
Hypertension, Pulmonary , I-kappa B Kinase , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Humans , Rats , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , I-kappa B Kinase/metabolism , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
6.
Theranostics ; 14(5): 1841-1859, 2024.
Article in English | MEDLINE | ID: mdl-38505605

ABSTRACT

Rationale: The surge of severe liver damage underscores the necessity for identifying new targets and therapeutic agents. Endoplasmic reticulum (ER) stress induces ferroptosis with Gα12 overexpression. NF-κB essential modulator (NEMO) is a regulator of inflammation and necroptosis. Nonetheless, the regulatory basis of NEMO de novo synthesis and its impact on hepatocyte ferroptosis need to be established. This study investigated whether Nrf2 transcriptionally induces IKBKG (the NEMO gene) for ferroptosis inhibition and, if so, how NEMO induction protects hepatocytes against ER stress-induced ferroptosis. Methods: Experiments were conducted using human liver tissues, hepatocytes, and injury models, incorporating NEMO overexpression and Gα12 gene modulations. RNA sequencing, immunoblotting, immunohistochemistry, reporter assays, and mutation analyses were done. Results: NEMO downregulation connects closely to ER and oxidative stress, worsening liver damage via hepatocyte ferroptosis. NEMO overexpression protects hepatocytes from ferroptosis by promoting glutathione peroxidase 4 (GPX4) expression. This protective role extends to oxidative and ER stress. Similar shifts occur in nuclear factor erythroid-2-related factor-2 (Nrf2) expression alongside NEMO changes. Nrf2 is newly identified as an IKBKG (NEMO gene) transactivator. Gα12 changes, apart from Nrf2, impact NEMO expression, pointing to post-transcriptional control. Gα12 reduction lowers miR-125a, an inhibitor of NEMO, while overexpression has the opposite effect. NEMO also counters ER stress, which triggers Gα12 overexpression. Gα12's significance in NEMO-dependent hepatocyte survival is confirmed via ROCK1 inhibition, a Gα12 downstream kinase, and miR-125a. The verified alterations or associations within the targeted entities are validated in human liver specimens and datasets originating from livers subjected to exposure to other injurious agents. Conclusions: Hepatic injury prompted by ER stress leads to the suppression of NEMO, thereby facilitating ferroptosis through the inhibition of GPX4. IKBKG is transactivated by Nrf2 against Gα12 overexpression responsible for the increase of miR-125a, an unprecedented NEMO inhibitor, resulting in GPX4 induction. Accordingly, the induction of NEMO mitigates ferroptotic liver injury.


Subject(s)
Ferroptosis , Liver Diseases , MicroRNAs , Humans , Endoplasmic Reticulum Stress/genetics , Ferroptosis/genetics , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , rho-Associated Kinases
7.
Pharm Biol ; 62(1): 285-295, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38516898

ABSTRACT

CONTEXT: Membranous glomerulonephritis (MGN) is a leading cause of nephrotic syndrome in adults. Diosgenin (DG) has been reported to exert antioxidative and anti-inflammatory effects. OBJECTIVE: To investigate the renoprotective activity of DG in a cationic bovine serum albumin-induced rat model of MGN. MATERIALS AND METHODS: Fourty male Sprague-Dawley rats were randomized into four groups. The MGN model was established and treated with a DG dose (10 mg/kg) and a positive control (TPCA1, 10 mg/kg), while normal control and MGN groups received distilled water by gavage for four consecutive weeks. At the end of the experiment, 24 h urinary protein, biochemical indices, oxidation and antioxidant levels, inflammatory parameters, histopathological examination, immunohistochemistry and immunoblotting were evaluated. RESULTS: DG significantly ameliorated kidney dysfunction by decreasing urinary protein (0.56-fold), serum creatinine (SCr) (0.78-fold), BUN (0.71-fold), TC (0.66-fold) and TG (0.73-fold) levels, and increasing ALB (1.44-fold). DG also reduced MDA (0.82-fold) and NO (0.83-fold) levels while increasing the activity of SOD (1.56-fold), CAT (1.25-fold), glutathione peroxidase (GPx) (1.55-fold) and GSH (1.81-fold). Furthermore, DG reduced Keap1 (0.76-fold) expression, Nrf2 nuclear translocation (0.79-fold), and induced NQO1 (1.25-fold) and HO-1 (1.46-fold) expression. Additionally, DG decreased IL-2 (0.55-fold), TNF-α (0.80-fold) and IL-6 (0.75-fold) levels, and reduced protein expression of NF-κB p65 (0.80-fold), IKKß (0.93-fold), p-IKKß (0.89-fold), ICAM-1 (0.88-fold), VCAM-1 (0.91-fold), MCP-1 (0.88-fold) and E-selectin (0.87-fold), and also inhibited the nuclear translocation of NF-κB p65 (0.64-fold). DISCUSSION AND CONCLUSIONS: The results suggest a potential therapeutic benefit of DG against MGN due to the inhibition of the NF-κB pathway, supporting the need for further clinical trials.


Subject(s)
Glomerulonephritis, Membranous , Rats , Male , Animals , Glomerulonephritis, Membranous/chemically induced , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/prevention & control , NF-kappa B/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Rats, Sprague-Dawley , I-kappa B Kinase/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Antioxidants/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control
8.
Eur J Pharmacol ; 970: 176480, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38490468

ABSTRACT

The management and therapy of bone cancer pain (BCP) remain formidable clinical challenges. Curcumin and its analogues have been shown to have anti-inflammatory and analgesic properties. In the present study, we investigated the efficacy of curcumin analogue NL04 (NL04) in modulating inflammation in spinal dorsal horn (SDH), thereby exploring its potential to reduce central sensitization of BCP in a rat model. Differing doses of NL04 and curcumin were administered intrathecally either once (on day 12 of BCP) or over seven consecutive days (from day 6-12 of BCP). Results indicated that the ED50 for NL04 and curcumin ameliorating BCP-induced mechanical hyperalgesia is 49.08 µg/kg and 489.6 µg/kg, respectively. The analgesic effects at various doses of NL04 lasted between 4 and 8 h, with sustained administration over a week maintaining pain relief for 1-4 days, while also ameliorating locomotor gait via gait analysis and reducing depressive and anxiety-like behaviors via open-field and light-dark transition tests. The analgesic effects at various doses of curcumin lasted 4 h, with sustained administration over a week maintaining pain relief for 0-2 days. ELISA, Western blotting, qPCR, and immunofluorescence assays substantiated that intrathecal administration of NL04 on days 6-12 of BCP dose-dependently lowered spinal IL-1ß and IL-18 levels and significantly reduced the expression of IKKß genes and proteins, as well as the downstream cleavage of the trans-Golgi network (TGN). Whole-cell patch-clamp results demonstrated that NL04 inhibits potassium ion efflux in rat primary spinal neurons. Thus, NL04 exhibits significant analgesic effects in a BCP rat model by downregulating IKKß expression and inhibiting neuronal potassium ion efflux, which, in turn, suppresses the activation of NLRP3 inflammasomes and reduces IL-1ß production, potentially ameliorating pain management in BCP.


Subject(s)
Bone Neoplasms , Cancer Pain , Curcumin , Rats , Animals , Cancer Pain/drug therapy , Cancer Pain/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Central Nervous System Sensitization , I-kappa B Kinase/metabolism , Pain/drug therapy , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Spinal Cord , Potassium/metabolism
9.
Cell Cycle ; 23(3): 308-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38461418

ABSTRACT

Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase ß (IKKß)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated ß-galactosidase (SA-ß-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKß (IKKß-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKß-CA on senescence is largely mediated by NF-κB. We also found that IKKß-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKß-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Fibroblasts , I-kappa B Kinase , NF-kappa B , Animals , Mice , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Fibroblasts/metabolism , I-kappa B Kinase/metabolism , I-kappa B Kinase/genetics , NF-kappa B/metabolism , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Signal Transduction
10.
Sci Rep ; 14(1): 4402, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388665

ABSTRACT

The DNA repair gene PARP1 and NF-κB signalling pathway affect the metastasis of breast cancer by influencing the drug resistance of cancer cells. Therefore, this study focused on the value of the DNA repair gene PARP1 and NF-κB pathway proteins in predicting the postoperative metastasis of breast cancer. A nested case‒control study was performed. Immunohistochemical methods were used to detect the expression of these genes in patients. ROC curves were used to analyse the predictive effect of these factors on distant metastasis. The COX model was used to evaluate the effects of PARP1 and TNF-α on distant metastasis. The results showed that the expression levels of PARP1, IKKß, p50, p65 and TNF-α were significantly increased in the metastasis group (P < 0.001). PARP1 was correlated with IKKß, p50, p65 and TNF-α proteins (P < 0.001). There was a correlation between IKKß, p50, p65 and TNF-α proteins (P < 0.001). ROC curve analysis showed that immunohistochemical scores for PARP1 of > 6, IKKß of > 4, p65 of > 4, p50 of > 2, and TNF-α of > 4 had value in predicting distant metastasis (SePARP1 = 78.35%, SpPARP1 = 79.38%, AUCPARP1 = 0.843; Sep50 = 64.95%, Spp50 = 70.10%, AUCp50 = 0.709; SeTNF-α = 60.82%, SpTNF-α = 69.07%, AUCTNF-α = 0.6884). Cox regression analysis showed that high expression levels of PARP1 and TNF-α were a risk factor for distant metastasis after breast cancer surgery (RRPARP1 = 4.092, 95% CI 2.475-6.766, P < 0.001; RRTNF-α = 1.825, 95% CI 1.189-2.799, P = 0.006). Taken together, PARP1 > 6, p50 > 2, and TNF-α > 4 have a certain value in predicting breast cancer metastasis, and the predictive value is better when they are combined for diagnosis (Secombine = 97.94%, Spcombine = 71.13%).


Subject(s)
Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/surgery , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Case-Control Studies , Transcription Factor RelA/metabolism , DNA Repair/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
11.
Ecotoxicol Environ Saf ; 272: 116067, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325270

ABSTRACT

In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Asthma , I-kappa B Kinase , Animals , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Asthma/chemically induced , Asthma/genetics , I-kappa B Kinase/metabolism , Obesity , Oxidative Stress/genetics , Particulate Matter/toxicity , RNA Stability , RNA, Messenger/metabolism
12.
J Immunol ; 212(8): 1345-1356, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38407485

ABSTRACT

The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is critical for cancer cell proliferation and immune cell phenotypes, but whether it can contribute to macrophage inflammatory responses remains unclear. In this study, we show that MTHFD2 was upregulated by LPS in murine macrophages upon activation of the TLR4-MyD88-IKKα/ß-NF-κB signaling pathway. MTHFD2 significantly attenuated LPS-induced macrophage proinflammatory cytokine production through its enzymatic activity. Notably, ablation of myeloid MTHFD2 rendered mice more sensitive to septic shock and CCl4-induced acute hepatitis. Mechanistically, MTHFD2 restrained IKKα/ß-NF-κB activation and macrophage inflammatory phenotype by scavenging reactive oxygen species through the generation of NADPH. Our study reveals MTHFD2 as a "self-control" mechanism in macrophage-mediated inflammatory responses.


Subject(s)
I-kappa B Kinase , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Reactive Oxygen Species , I-kappa B Kinase/metabolism , Lipopolysaccharides , Signal Transduction , Macrophages
13.
Cell Death Differ ; 31(5): 618-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38424148

ABSTRACT

IκB kinase (IKK) complex is central regulators of the NF-κB pathway, and dysregulation of IKK phosphorylation leads to hyperactivation of proinflammatory response in various chronic inflammatory diseases, including inflammatory bowel disease (IBD). However, the dynamic modulation of IKK phosphorylation and dephosphorylation in intestinal inflammation remains uncharacterized. Here, we found that autophagy/beclin-1 regulator 1 (AMBRA1) was highly expressed in inflamed colons in a colitis mouse model and in clinical IBD samples. Importantly, AMBRA1 deletion significantly decreased proinflammatory cytokine expression and enhanced the therapeutic effect of infliximab on intestinal inflammation. Mechanistically, the N-term F1 domain of AMBRA1 was required for AMBRA1 to competitively interact with protein phosphatase 4 regulatory subunit 1 (PP4R1) and catalytic protein phosphatase 4 (PP4c) to suppress their interactions with IKK, promote the dissociation of the PP4R1/PP4c complex, and antagonize the dephosphorylation activity of this complex towards the IKK complex. In response to TNF-α stimulation, IKKα phosphorylates AMBRA1 at S1043 to stabilize AMBRA1 expression by impairing its binding to Cullin4A (CUL4A) to decrease its CUL4A-mediated K48-linked ubiquitination. Overall, our study identifies an autophagy-independent function of AMBRA1 as a positive modulator of IKK phosphorylation to promote intestinal inflammation, thus providing a new targeted therapeutic strategy for patients with refractory IBD.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy , I-kappa B Kinase , Animals , Autophagy/drug effects , Mice , Humans , I-kappa B Kinase/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/pathology , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , HEK293 Cells
14.
Sci Rep ; 14(1): 2744, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38302598

ABSTRACT

Amlexanox is an anti-inflammatory and anti-allergic agent used clinically for the treatment of aphthous ulcers, allergic rhinitis, and asthma. Recent studies have demonstrated that amlexanox, a selective inhibitor of IkB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1), suppresses a range of diseases or inflammatory conditions, such as obesity-related metabolic dysfunction and type 2 diabetes. However, the effects of amlexanox on neuroinflammatory responses to amlexanox have not yet been comprehensively studied. In this study, we investigated the novel therapeutic effect of amlexanox on LPS-induced neuroinflammation in vivo, and intraperitoneal injection of amlexanox markedly reduced LPS-induced IKKε levels, proinflammatory cytokines, and microglial activation, as evidenced by ionized calcium-binding adapter molecule 1 (Iba1) immunostaining. Furthermore, amlexanox significantly reduced proinflammatory cytokines and chemokines in LPS-induced bone marrow-derived macrophages (BMDM), murine BV2, and human HMC3 microglial cells. This data provided considerable evidence that amlexanox can be used as a preventive and curative therapy for neuroinflammatory and neurodegenerative diseases. In terms of mechanism aspects, our results demonstrated that the anti-inflammatory action of amlexanox in BV2 microglial cells was through the downregulation of NF-κB and STAT3 signaling pathways. In addition, the combination of amlexanox and SPI (a STAT3 selective inhibitor) showed high efficiency in inhibiting the production of neurotoxic and pro-inflammatory mediators. Overall, our data provide rational insights into the mechanisms of amlexanox as a potential therapeutic strategy for neuroinflammation-related diseases.


Subject(s)
Aminopyridines , Diabetes Mellitus, Type 2 , NF-kappa B , Humans , Mice , Animals , NF-kappa B/metabolism , Microglia/metabolism , Lipopolysaccharides/metabolism , I-kappa B Kinase/metabolism , Neuroinflammatory Diseases , Diabetes Mellitus, Type 2/metabolism , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , STAT3 Transcription Factor/metabolism
15.
Cells ; 13(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38334675

ABSTRACT

Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer's disease-like pathologies in mice, including interleukin-1ß (IL-1ß) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1ß production by microglia. We first subjected IL-1ß-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human ß-defensin 3 (hBD3). IL-1ß production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1ß production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1ß production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1ß production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1ß production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1ß without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1ß through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1ß-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL.


Subject(s)
Microglia , beta-Defensins , Humans , beta-Defensins/metabolism , Cathepsin B/metabolism , I-kappa B Kinase/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Microglia/metabolism , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Virulence Factors/metabolism
16.
Cardiovasc Res ; 120(2): 164-173, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38165268

ABSTRACT

AIMS: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKß suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined. METHODS AND RESULTS: Herein, we identify a novel signalling axis that functionally connects IKKß and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2. In contrast to vehicle-treated cells, MFN2 was highly ubiquitinated and rapidly degraded by the proteasomal-regulated pathway in cardiac myocytes treated with doxorubicin. The loss of MFN2 activity resulted in mitochondrial perturbations, including increased reactive oxygen species (ROS) production, impaired respiration, and necrotic cell death. Interestingly, doxorubicin-induced degradation of MFN2 and mitochondrial-regulated cell death were contingent upon IKKß kinase activity. Notably, immunoprecipitation and proximity ligation assays revealed that IKKß interacted with MFN2 suggesting that MFN2 may be a phosphorylation target of IKKß. To explore this possibility, mass spectrometry analysis identified a novel MFN2 phospho-acceptor site at serine 53 that was phosphorylated by wild-type IKKß but not by a kinase-inactive mutant IKKßK-M. Based on these findings, we reasoned that IKKß-mediated phosphorylation of serine 53 may influence MFN2 protein stability. Consistent with this view, an IKKß-phosphomimetic MFN2 (MFN2S53D) was resistant to proteasomal degradation induced by doxorubicin whereas wild-type MFN2 and IKKß-phosphorylation defective MFN2 mutant (MFNS53A) were readily degraded in cardiac myocytes treated with doxorubicin. Concordantly, gain of function of IKKß or MFN2S53D suppressed doxorubicin-induced mitochondrial injury and cell death. CONCLUSIONS: The findings of this study reveal a novel survival pathway for IKKß that is mutually dependent upon and obligatory linked to the phosphorylation and stabilization of the mitochondrial dynamics protein MFN2.


Subject(s)
Cardiomyopathies , I-kappa B Kinase , Humans , I-kappa B Kinase/metabolism , Signal Transduction , Doxorubicin , Mitochondrial Proteins/metabolism , Serine
17.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38252412

ABSTRACT

TDP-43 aggregation is a hallmark of neurodegeneration. In this issue, Iguchi et al. (https://doi.org/10.1083/jcb.202302048) report that IκB kinase (IKK), an important mediator of inflammation, phosphorylates cytoplasmic TDP-43 to promote proteasomal degradation, revealing an unexpected link between inflammation and TDP-43 homeostasis.


Subject(s)
DNA-Binding Proteins , I-kappa B Kinase , Proteasome Endopeptidase Complex , Humans , Cytoplasm , DNA-Binding Proteins/chemistry , I-kappa B Kinase/metabolism , Inflammation , Phosphorylation , Proteasome Endopeptidase Complex/metabolism
18.
Cell Signal ; 116: 111062, 2024 04.
Article in English | MEDLINE | ID: mdl-38242271

ABSTRACT

IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Zinc Finger E-box Binding Homeobox 2/metabolism , I-kappa B Kinase/metabolism
19.
Cancer Lett ; 584: 216644, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38253217

ABSTRACT

The cytokine tumor necrosis factor (TNF) plays a crucial role in the proliferation and metastasis of colorectal cancer (CRC) cells, but the underlying mechanisms remain poorly understood. Here, we report that chondroitin polymerizing factor 2 (CHPF2) promotes CRC cell proliferation and metastasis mediated by TNF, independently of its enzymatic activity. CHPF2 is highly expressed in CRC, and its elevated expression is associated with poor prognosis of CRC patients. Mechanistically, upon TNF stimulation, CHPF2 is phosphorylated at the T588 residue by MEK, enabling CHPF2 to interact with both TAK1 and IKKα. This interaction enhances the binding of TAK1 and IKKα, leading to increased phosphorylation of the IKK complex and activation of NF-κB signaling. As a result, the expression of early growth factors (EGR1) is upregulated to promote CRC cell proliferation and metastasis. In contrast, introduction of a phospho-deficient T588A mutation in CHPF2 weakened the interaction between CHPF2 and TAK1, thus impairing NF-κB signaling. CHPF2 T588A mutation reduced the ability of CHPF2 to promote the proliferation and metastasis of CRC in vitro and in vivo. Furthermore, the NF-κB RELA subunit promotes CHPF2 expression, further amplifying TNF-induced NF-κB signaling activation. These findings identify a moonlighting function of CHPF2 in promoting tumor cell proliferation and metastasis and provide insights into the mechanism by which CHPF2 amplifies TNF-mediated NF-κB signaling activation. Our study provides a molecular basic for the development of therapeutic strategies for CRC treatment.


Subject(s)
Colorectal Neoplasms , NF-kappa B , Humans , NF-kappa B/metabolism , Phosphorylation , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Cell Line, Tumor , Tumor Necrosis Factor-alpha/metabolism , Cell Proliferation , Colorectal Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism
20.
Biomaterials ; 305: 122466, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184960

ABSTRACT

Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.


Subject(s)
Benzopyrans , Cerium , Metal Nanoparticles , Nanoparticles , Sepsis , Mice , Animals , Phosphorylation , I-kappa B Kinase/metabolism , I-kappa B Kinase/therapeutic use , Inflammation/drug therapy , Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Cerium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...