Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Zool Res ; 45(5): 990-1000, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39147714

ABSTRACT

The von Hippel-Lindau tumor suppressor protein (VHL), an E3 ubiquitin ligase, functions as a critical regulator of the oxygen-sensing pathway for targeting hypoxia-inducible factors. Recent evidence suggests that mammalian VHL may also be critical to the NF-κB signaling pathway, although the specific molecular mechanisms remain unclear. Herein, the roles of mandarin fish ( Siniperca chuatsi) VHL ( scVHL) in the NF-κB signaling pathway and mandarin fish ranavirus (MRV) replication were explored. The transcription of scVHL was induced by immune stimulation and MRV infection, indicating a potential role in innate immunity. Dual-luciferase reporter gene assays and reverse transcription quantitative PCR (RT-qPCR) results demonstrated that scVHL evoked and positively regulated the NF-κB signaling pathway. Treatment with NF-κB signaling pathway inhibitors indicated that the role of scVHL may be mediated through scIKKα, scIKKß, scIκBα, or scp65. Co-immunoprecipitation (Co-IP) analysis identified scIκBα as a novel target protein of scVHL. Moreover, scVHL targeted scIκBα to catalyze the formation of K63-linked polyubiquitin chains to activate the NF-κB signaling pathway. Following MRV infection, NF-κB signaling remained activated, which, in turn, promoted MRV replication. These findings suggest that scVHL not only positively regulates NF-κB but also significantly enhances MRV replication. This study reveals a novel function of scVHL in NF-κB signaling and viral infection in fish.


Subject(s)
Fish Diseases , NF-kappa B , Ranavirus , Signal Transduction , Virus Replication , Animals , NF-kappa B/metabolism , NF-kappa B/genetics , Virus Replication/physiology , Fish Diseases/virology , Ranavirus/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , DNA Virus Infections/veterinary , DNA Virus Infections/virology , Fish Proteins/metabolism , Fish Proteins/genetics , I-kappa B Proteins/metabolism , I-kappa B Proteins/genetics , Gene Expression Regulation
2.
Genes Dev ; 38(11-12): 528-535, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38960718

ABSTRACT

As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.


Subject(s)
Models, Molecular , NF-kappa B p50 Subunit , Protein Binding , Protein Multimerization , Humans , Amino Acid Sequence , Cell Nucleus/metabolism , Crystallography, X-Ray , DNA/metabolism , DNA/chemistry , I-kappa B Proteins/metabolism , I-kappa B Proteins/chemistry , I-kappa B Proteins/genetics , NF-kappa B p50 Subunit/metabolism , NF-kappa B p50 Subunit/chemistry , NF-kappa B p50 Subunit/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/chemistry , Transcription Factor RelA/genetics
3.
Genes Dev ; 38(11-12): 536-553, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38918046

ABSTRACT

The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including Il6, Il1b, Nos2, Lcn2, and Batf, are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.


Subject(s)
Gene Expression Regulation , Macrophages , NF-kappa B p50 Subunit , Signal Transduction , Toll-Like Receptor 4 , Animals , Mice , Adaptor Proteins, Signal Transducing , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Inflammation/genetics , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Protein Binding , Signal Transduction/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Male
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-35279

ABSTRACT

The effects of black rice anthocyanidins (BRACs) on retinal damage induced by photochemical stress are not well known. In the present study, Sprague-Dawley rats were fed AIN-93M for 1 week, after which 80 rats were randomly divided into two groups and treated with (n = 40) or without BRACs (n = 40) for 15 days, respectively. After treatment, both groups were exposed to fluorescent light (3,000 +/- 200 lux; 25degrees C), and the protective effect of dietary BRACs were evaluated afterwards. Our results showed that dietary BRACs effectively prevented retinal photochemical damage and inhibited the retinal cells apoptosis induced by fluorescent light (p < 0.05). Moreover, dietary BRACs inhibited expression of AP-1 (c-fos/c-jun subunits), up-regulated NF-kappaB (p65) expression and phosphorylation of IkappaB-alpha, and decreased Caspase-1 expression (p < 0.05). These results suggest that BRACs improve retinal damage produced by photochemical stress in rats via AP-1/NF-kappaB/Caspase-1 apoptotic mechanisms.


Subject(s)
Animals , Rats , Animal Feed/analysis , Anthocyanins/administration & dosage , Antioxidants/administration & dosage , Blotting, Western , Caspase 1/genetics , Diet , Dietary Supplements/analysis , I-kappa B Proteins/genetics , NF-kappa B/genetics , Neoplasm Proteins/genetics , Nucleocytoplasmic Transport Proteins/genetics , Oryza/chemistry , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/genetics , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Retinal Diseases/etiology , Signal Transduction/drug effects , Transcription Factor AP-1/genetics
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-167888

ABSTRACT

Embryonic stem cells (ESCs) can be propagated in vitro on feeder layers of mouse STO fibroblast cells. The STO cells secrete several cytokines that are essential for ESCs to maintain their undifferentiated state. In this study, we found significant growth inhibition of mouse ESCs (mESCs) cultured on STO cells infected with adenovirus containing a dominant-negative mutant form of IkappaB (rAd-dnIkappaB). This blockage of the NF-kappaB signal pathway in STO cells led to a significant decrease in [3H]thymidine incorporation and colony formation of mESCs. Expression profile of cytokines secreted from the STO cells revealed an increase in the bone morphogenetic protein4 (BMP4) transcript level in the STO cells infected with adenoviral vector encoding dominant negative IkappaB (rAd-dnIkappaB). These results suggested that the NF-kappaB signaling pathway represses expression of BMP4 in STO feeder cells. Conditioned medium from the rAd-dnIkappaB-infected STO cells also significantly reduced the colony size of mESCs. Addition of BMP4 prevented colony formation of mESCs cultured in the conditioned medium. Our finding suggested that an excess of BMP4 in the conditioned medium also inhibits proliferation of mESCs.


Subject(s)
Animals , Mice , Bone Morphogenetic Protein 4/genetics , Cell Differentiation/genetics , Cell Proliferation , Culture Media, Conditioned , Embryonic Stem Cells/cytology , Feeder Cells/cytology , Fibroblasts/cytology , Gene Expression Regulation/genetics , I-kappa B Proteins/genetics , Mutation , NF-kappa B/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL