Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.832
Filter
1.
Nat Commun ; 15(1): 3744, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702321

ABSTRACT

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Subject(s)
Algorithms , Diabetes Mellitus, Type 1 , Pancreas , Proteomics , Humans , Proteomics/methods , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Pancreas/cytology , Pancreas/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Single-Cell Analysis/methods , Neural Networks, Computer , CD8-Positive T-Lymphocytes/metabolism , Image Cytometry/methods
2.
Front Immunol ; 15: 1325191, 2024.
Article in English | MEDLINE | ID: mdl-38711512

ABSTRACT

Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cancer-Associated Fibroblasts , Image Cytometry , Tumor Microenvironment , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female , Tumor Microenvironment/immunology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Biomarkers, Tumor/metabolism , Image Cytometry/methods
3.
Front Immunol ; 15: 1379154, 2024.
Article in English | MEDLINE | ID: mdl-38742102

ABSTRACT

Imaging mass cytometry (IMC) is a metal mass spectrometry-based method allowing highly multiplex immunophenotyping of cells within tissue samples. However, some limitations of IMC are its 1-µm resolution and its time and costs of analysis limiting respectively the detailed histopathological analysis of IMC-produced images and its application to small selected tissue regions of interest (ROI) of one to few square millimeters. Coupling on a single-tissue section, IMC and histopathological analyses could permit a better selection of the ROI for IMC analysis as well as co-analysis of immunophenotyping and histopathological data until the single-cell level. The development of this method is the aim of the present study in which we point to the feasibility of applying the IMC process to tissue sections previously Alcian blue-stained and digitalized before IMC tissue destructive analyses. This method could help to improve the process of IMC in terms of ROI selection, time of analysis, and the confrontation between histopathological and immunophenotypic data of cells.


Subject(s)
Image Cytometry , Immunophenotyping , Staining and Labeling , Staining and Labeling/methods , Immunophenotyping/methods , Image Cytometry/methods , Humans , Mass Spectrometry/methods , Animals , Single-Cell Analysis/methods
4.
Methods Mol Biol ; 2775: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38758319

ABSTRACT

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, ß-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.


Subject(s)
Cryptococcus neoformans , Flow Cytometry , Phagocytosis , Flow Cytometry/methods , Cryptococcus neoformans/metabolism , Animals , Mice , Phagocytes/metabolism , Phagocytes/microbiology , Cryptococcosis/microbiology , Cryptococcosis/metabolism , Cryptococcosis/immunology , Cryptococcus/metabolism , Humans , Image Cytometry/methods , Receptors, Pattern Recognition/metabolism
5.
Methods Mol Biol ; 2779: 407-423, 2024.
Article in English | MEDLINE | ID: mdl-38526797

ABSTRACT

The complexities and cellular heterogeneity associated with tissues necessitate the concurrent detection of markers beyond the limitations of conventional imaging approaches in order to spatially resolve the relationships between immune cell populations and their environments. This is a necessary complement to single-cell suspension-based methods to inform a better understanding of the events that may underlie pathological conditions. Imaging mass cytometry is a high-dimensional imaging modality that allows for the concurrent detection of up to 40 protein markers of interest across tissues at subcellular resolution. Here, we present an optimized staining protocol for imaging mass cytometry with modifications that integrate RNAscope. This unique addition enables combined protein and single-molecule RNA detection, thereby expanding the utility of imaging mass cytometry to researchers investigating low abundance or noncoding targets. In general, the procedure described is broadly applicable for comprehensive immune profiling of host-pathogen interactions, tumor microenvironments and inflammatory conditions, all within the tissue contexture.


Subject(s)
Proteins , RNA , Staining and Labeling , Image Cytometry/methods , Flow Cytometry/methods
7.
Sci Rep ; 14(1): 3365, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336890

ABSTRACT

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/pathology , Muscular Atrophy/metabolism , Muscles/metabolism , Collagen/metabolism , Disease Progression , Image Cytometry , Muscle, Skeletal/metabolism
8.
Cancer Res ; 84(7): 1165-1177, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38315789

ABSTRACT

Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. SIGNIFICANCE: Leveraging artificial intelligence-powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Artificial Intelligence , Ecosystem , Image Cytometry
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338669

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. PDAC is characterized by a complex tumor microenvironment (TME), that plays a pivotal role in disease progression and resistance to therapy. Investigating the spatial distribution and interaction of TME cells with the tumor is the basis for understanding the mechanisms underlying disease progression and represents a current challenge in PDAC research. Imaging mass cytometry (IMC) is the major multiplex imaging technology for the spatial analysis of tumor heterogeneity. However, there is a dearth of reports of multiplexed IMC panels for different preclinical mouse models, including pancreatic cancer. We addressed this gap by utilizing two preclinical models of PDAC: the genetically engineered, bearing KRAS-TP53 mutations in pancreatic cells, and the orthotopic, and developed a 28-marker panel for single-cell IMC analysis to assess the abundance, distribution and phenotypes of cells involved in PDAC progression and their reciprocal functional interactions. Herein, we provide an unprecedented definition of the distribution of TME cells in PDAC and compare the diversity between transplanted and genetic disease models. The results obtained represent an important and customizable tool for unraveling the complexities of PDAC and deciphering the mechanisms behind therapy resistance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreas/pathology , Disease Progression , Image Cytometry , Tumor Microenvironment
10.
Clin Respir J ; 18(1): e13703, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38083812

ABSTRACT

OBJECTIVE: The objective of this study is to study the adjunct role of combining DNA aneuploidy analysis with radial endobronchial ultrasound (R-EBUS)-guided sampling for diagnosis of peripheral lung lesions (PPLs). METHOD: A single-center prospective study was conducted in patients undergoing R-EBUS-guided sampling for PPLs. DNA image cytometry (DNA-ICM) was used to analyze DNA aneuploidy in bronchial washing from the bronchial segment of the PPL. Clinical information, R-EBUS data, pathology, DNA-ICM results, and follow-up data were analyzed. Sensitivity, specificity, and predictive values for R-EBUS-guided sampling, DNA-ICM, and the two methods combined were measured. Binary logistic regression was performed to determine influencing factors on diagnostic positivity rate. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cutoff point for DNA-ICM. RESULTS: A total of 101 patients were enrolled. Sixty-four (63.4%) patients had confirmed malignant tumor, of whom 33 were confirmed by R-EBUS-guided sampling (biopsy and/or bronchial brush and wash cytology), and 31 by surgery or percutaneous lung biopsy. Thirty-seven patients were finally considered to have benign lesions, based on clinical information and 1-year follow-up. The sensitivity for malignant disease was 51.6% by R-EBUS, and specificity was 100%. DNA-ICM had a sensitivity of 67.2% and a specificity of 86.5%. When combining the two methods, sensitivity increased to 78.1% and specificity was 86.5%. Lesion size and whether the R-EBUS probe was located in the lesion were significantly associated with positivity rate of the combined methods. The optimal cutoff point for DNA-ICM was 5c for max DNA content, and 1 for aneuploid cell count (sensitivity 67.2%, specificity 86.5%, accuracy 63.4%). CONCLUSION: In malignant PPLs, DNA-ICM combined with R-EBUS-guided sampling can improve diagnostic positivity compared with either method alone.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Prospective Studies , Bronchoscopy/methods , Bronchi/diagnostic imaging , Bronchi/pathology , Endosonography/methods , Ultrasonography, Interventional/methods , Aneuploidy , Image Cytometry , Retrospective Studies
11.
Cytometry A ; 105(1): 36-53, 2024 01.
Article in English | MEDLINE | ID: mdl-37750225

ABSTRACT

Analysis of imaging mass cytometry (IMC) data and other low-resolution multiplexed tissue imaging technologies is often confounded by poor single-cell segmentation and suboptimal approaches for data visualization and exploration. This can lead to inaccurate identification of cell phenotypes, states, or spatial relationships compared to reference data from single-cell suspension technologies. To this end we have developed the "OPTimized Imaging Mass cytometry AnaLysis (OPTIMAL)" framework to benchmark any approaches for cell segmentation, parameter transformation, batch effect correction, data visualization/clustering, and spatial neighborhood analysis. Using a panel of 27 metal-tagged antibodies recognizing well-characterized phenotypic and functional markers to stain the same Formalin-Fixed Paraffin Embedded (FFPE) human tonsil sample tissue microarray over 12 temporally distinct batches we tested several cell segmentation models, a range of different arcsinh cofactor parameter transformation values, 5 different dimensionality reduction algorithms, and 2 clustering methods. Finally, we assessed the optimal approach for performing neighborhood analysis. We found that single-cell segmentation was improved by the use of an Ilastik-derived probability map but that issues with poor segmentation were only really evident after clustering and cell type/state identification and not always evident when using "classical" bivariate data display techniques. The optimal arcsinh cofactor for parameter transformation was 1 as it maximized the statistical separation between negative and positive signal distributions and a simple Z-score normalization step after arcsinh transformation eliminated batch effects. Of the five different dimensionality reduction approaches tested, PacMap gave the best data structure with FLOWSOM clustering out-performing phenograph in terms of cell type identification. We also found that neighborhood analysis was influenced by the method used for finding neighboring cells with a "disc" pixel expansion outperforming a "bounding box" approach combined with the need for filtering objects based on size and image-edge location. Importantly, OPTIMAL can be used to assess and integrate with any existing approach to IMC data analysis and, as it creates .FCS files from the segmentation output and allows for single-cell exploration to be conducted using a wide variety of accessible software and algorithms familiar to conventional flow cytometrists.


Subject(s)
Algorithms , Benchmarking , Humans , Software , Cluster Analysis , Image Cytometry/methods
12.
J Immunol Methods ; 524: 113587, 2024 01.
Article in English | MEDLINE | ID: mdl-38040192

ABSTRACT

Immunophenotyping has been the primary assay for characterization of immune cells from patients undergoing therapeutic treatments in clinical research, which is critical for understanding disease progression and treatment efficacy. Currently, flow cytometry has been the dominant methodology for characterizing surface marker expression for immunological research. Flow cytometry has been proven to be an effective and efficient method for immunophenotyping, however, it requires highly trained users and a large time commitment. Recently, a novel image cytometry system (Cellaca® PLX Image Cytometer, Revvity Health Sciences, Inc., Lawrence, MA) has been developed as a complementary method to flow cytometry for performing rapid and high-throughput immunophenotyping. In this work, we demonstrated an image cytometric screening method to characterize immune cell populations, streamlining the analysis of routine surface marker panels. The T cell, B cell, NK cell, and monocyte populations of 46 primary PBMC samples from subjects enrolled in autoimmune and oncological disease study cohorts were analyzed with two optimized immunophenotyping staining kits: Panel 1 (CD3, CD56, CD14) and Panel 2 (CD3, CD56, CD19). We validated the proposed image cytometry method by comparing the Cellaca® PLX and the AuroraTM flow cytometer (Cytek Biosciences, Fremont, CA). The image cytometry system was employed to generate bright field and fluorescent images, as well as scatter plots for multiple patient PBMC samples. In addition, the image cytometry method can directly determine cell concentrations for downstream assays. The results demonstrated comparable CD3, CD14, CD19, and CD56 cell populations from the primary PBMC samples, which showed an average of 5% differences between flow and image cytometry. The proposed image cytometry method provides a novel research tool to potentially streamline immunophenotyping workflow for characterizing patient samples in clinical studies.


Subject(s)
Leukocytes, Mononuclear , T-Lymphocytes , Humans , Immunophenotyping , Killer Cells, Natural , Flow Cytometry/methods , Antigens, CD19 , Image Cytometry
13.
Am J Transplant ; 24(4): 549-563, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37979921

ABSTRACT

Kidney allograft inflammation, mostly attributed to rejection and infection, is an important cause of graft injury and loss. Standard histopathological assessment of allograft inflammation provides limited insights into biological processes and the immune landscape. Here, using imaging mass cytometry with a panel of 28 validated biomarkers, we explored the single-cell landscape of kidney allograft inflammation in 32 kidney transplant biopsies and 247 high-dimensional histopathology images of various phenotypes of allograft inflammation (antibody-mediated rejection, T cell-mediated rejection, BK nephropathy, and chronic pyelonephritis). Using novel analytical tools, for cell segmentation, we segmented over 900 000 cells and developed a tissue-based classifier using over 3000 manually annotated kidney microstructures (glomeruli, tubules, interstitium, and arteries). Using PhenoGraph, we identified 11 immune and 9 nonimmune clusters and found a high prevalence of memory T cell and macrophage-enriched immune populations across phenotypes. Additionally, we trained a machine learning classifier to identify spatial biomarkers that could discriminate between the different allograft inflammatory phenotypes. Further validation of imaging mass cytometry in larger cohorts and with more biomarkers will likely help interrogate kidney allograft inflammation in more depth than has been possible to date.


Subject(s)
Inflammation , Kidney , Humans , Kidney/pathology , Biomarkers , Inflammation/pathology , Allografts/pathology , Image Cytometry , Graft Rejection/diagnosis , Graft Rejection/etiology
14.
Article in English | MEDLINE | ID: mdl-38007692

ABSTRACT

OBJECTIVE: This study aimed to evaluate cytology diagnosis accuracy using adjuvant methods in clinical routine for oral cancer. STUDY DESIGN: This prospective study was conducted on 98 patients with clinically potentially malignant or malignant oral cavity lesions. One oral lesion smear was taken from each patient using a cytobrush before biopsy and stored at PreservCyt Thinprep. Samples were cytologically analyzed, and DNA ploidy measurement was performed on the same slide. The diagnostic methods' accuracy was then calculated. RESULTS: In clinical inspection, 61 patients had suspicious lesions for malignancy, whereas 37 had potentially malignant disorders. Cytology associated with DNA image cytometry presented a sensitivity of 81.2% and specificity of 90.9%. When analyzing lesions located in high-risk sites to oral malignancies individually, cytology associated with DNA image cytometry presented a sensitivity of 88.2%, specificity of 100.0%, accuracy of 90.0%, and Kappa value of 0.77 (CI 95%: 0.48-1.00). CONCLUSIONS: Association between cytology and DNA image cytometry is an objective and non-invasive diagnostic method that demonstrated high sensitivity and specificity in diagnosing malignant epithelial squamous cell transformation in the oral cavity.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Prospective Studies , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , DNA , Sensitivity and Specificity , Image Cytometry/methods
15.
Lab Chip ; 23(22): 4868-4875, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37867384

ABSTRACT

A diagnostic test based on microfluidic image cytometry and machine learning has been designed and applied for accurate classification of erythrocytes and leukocytes, including a unique fully-automated 5-part quantitative differentiation into neutrophils, lymphocytes, monocytes, eosinophils, and basophils, using minute amounts of whole blood in a single counting chamber. A low-cost disposable multilayer microdevice for microfluidic image cytometry was developed that comprises a 1 mm × 22 mm × 70 µm (w × l × h) rectangular microchannel, allowing the analysis of trace volume of blood (20 µL) for each assay. Automated analysis of digitized binary images applying a border following algorithm was performed allowing the qualitative analysis of erythrocytes. Bright-field imaging was used for the detection of erythrocytes and fluorescence imaging for 5-part differentiation of leukocytes after acridine orange staining, applying a convolutional neural network enabling unparalleled speed for identification and automated morphology classification yielding 98.57% accuracy. Blood samples were obtained from 30 volunteers and count values did not significantly differ from data obtained using a commercial automated hematology analyzer.


Subject(s)
Leukocytes , Microfluidics , Humans , Erythrocytes , Machine Learning , Image Cytometry
16.
Cell Rep Methods ; 3(10): 100595, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37741277

ABSTRACT

Imaging mass cytometry (IMC) is a powerful technique capable of detecting over 30 markers on a single slide. It has been increasingly used for single-cell-based spatial phenotyping in a wide range of samples. However, it only acquires a rectangle field of view (FOV) with a relatively small size and low image resolution, which hinders downstream analysis. Here, we reported a highly practical dual-modality imaging method that combines high-resolution immunofluorescence (IF) and high-dimensional IMC on the same tissue slide. Our computational pipeline uses the whole-slide image (WSI) of IF as a spatial reference and integrates small-FOV IMC into a WSI of IMC. The high-resolution IF images enable accurate single-cell segmentation to extract robust high-dimensional IMC features for downstream analysis. We applied this method in esophageal adenocarcinoma of different stages, identified the single-cell pathology landscape via reconstruction of WSI IMC images, and demonstrated the advantage of the dual-modality imaging strategy.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Adenocarcinoma/diagnostic imaging , Fluorescent Antibody Technique , Image Cytometry
17.
Cytometry A ; 103(12): 1010-1018, 2023 12.
Article in English | MEDLINE | ID: mdl-37724720

ABSTRACT

Imaging mass cytometry (IMC) is a powerful spatial technology that utilizes cytometry time of flight to acquire multiplexed image datasets with up to 40 markers, via metal-tagged antibodies. Recent advances in IMC have led to the inclusion of RNAScope probes and multiple new analysis pipelines have led to faster analyses and better results. However, IMC still suffers from lower resolution (1 µm2 pixels) and relatively small regions of interest (ROIs) (<2 mm2 ) compared to other, light-based microscope technologies. Capturing higher-resolution images on serial sections causes great difficulty when attempting to align cells and structures across serial sections, especially when observing smaller cell types and structures. Therefore, we demonstrate the combination of H&E and multiplex immunofluorescence imaging, for much higher resolution of the structural and cellular compartments found throughout the entire tissue section, with the high-dimensionality of IMC for specific ROIs on a single slide. Additionally, we demonstrate a simple and effective open-source cell segmentation and IMC analysis pipeline with previously published and freely available software.


Subject(s)
Antibodies , Image Cytometry , Fluorescent Antibody Technique , Image Cytometry/methods
18.
Front Immunol ; 14: 1182581, 2023.
Article in English | MEDLINE | ID: mdl-37638025

ABSTRACT

Objective: To characterize and further compare the immune cell populations of the tumor microenvironment (TME) in both clear cell and papillary renal cell carcinoma (RCC) using heavy metal-labeled antibodies in a multiplexed imaging approach (imaging mass cytometry). Materials and methods: Formalin-fixed paraffin-embedded (FFPE) baseline tumor tissues from metastatic patients with clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were retrospectively requisitioned from an institutional biorepository. Pretreated FFPE samples from 33 RCC patients (10 ccRCC, 23 pRCC) were accessioned and stained for imaging mass cytometry (IMC) analysis. Clinical characteristics were curated from an institutional RCC database. FFPE samples were prepared and stained with heavy metal-conjugated antibodies for IMC. An 11-marker panel of tumor stromal and immune markers was used to assess and quantify cellular relationships in TME compartments. To validate our time-of-flight (CyTOF) analysis, we cross-validated findings with The Cancer Genome Atlas Program (TCGA) analysis and utilized the CIBERSORTx tool to examine the abundance of main immune cell types in pRCC and ccRCC patients. Results: Patients with ccRCC had a longer median overall survival than did those with pRCC (67.7 vs 26.8 mo, respectively). Significant differences were identified in the proportion of CD4+ T cells between disease subtypes (ccRCC 14.1%, pRCC 7.0%, p<0.01). Further, the pRCC cohort had significantly more PanCK+ tumor cells than did the ccRCC cohort (24.3% vs 9.5%, respectively, p<0.01). There were no significant differences in macrophage composition (CD68+) between cohorts. Our results demonstrated a significant correlation between the CyTOF and TCGA analyses, specifically validating that ccRCC patients exhibit higher levels of CD4+ T cells (ccRCC 17.60%, pRCC 15.7%, p<0.01) and CD8+ T cells (ccRCC 17.83%, pRCC 11.15%, p<0.01). The limitation of our CyTOF analysis was the large proportion of cells that were deemed non-characterizable. Conclusions: Our findings emphasize the need to investigate the TME in distinct RCC histological subtypes. We observed a more immune infiltrative phenotype in the TME of the ccRCC cohort than in the pRCC cohort, where a tumor-rich phenotype was noted. As practical predictive biomarkers remain elusive across all subtypes of RCC, further studies are warranted to analyze the biomarker potential of such TME classifications.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , CD8-Positive T-Lymphocytes , Retrospective Studies , Antibodies , Image Cytometry , Tumor Microenvironment
19.
Nat Methods ; 20(9): 1304-1309, 2023 09.
Article in English | MEDLINE | ID: mdl-37653118

ABSTRACT

Imaging mass cytometry (IMC) is a highly multiplexed, antibody-based imaging method that captures heterogeneous spatial protein expression patterns at subcellular resolution. Here we report the extension of IMC to low-abundance markers through incorporation of the DNA-based signal amplification by exchange reaction, immuno-SABER. We applied SABER-IMC to image the tumor immune microenvironment in human melanoma by simultaneous imaging of 18 markers with immuno-SABER and 20 markers without amplification. SABER-IMC enabled the identification of immune cell phenotypic markers, such as T cell co-receptors and their ligands, that are not detectable with IMC.


Subject(s)
Diagnostic Imaging , Melanoma , Humans , Antibodies , Image Cytometry , DNA , Tumor Microenvironment
20.
Clin Immunol ; 254: 109713, 2023 09.
Article in English | MEDLINE | ID: mdl-37516396

ABSTRACT

Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry (IMC) may shed novel insights on the molecular makeup of proliferative lupus nephritis (LN). This study interrogates the spatial expression profiles of 50 target proteins in LN and control kidneys. Proliferative LN glomeruli are marked by podocyte loss with immune infiltration dominated by CD45RO+, HLA-DR+ memory CD4 and CD8 T-cells, and CD163+ macrophages, with similar changes in tubulointerstitial regions. Macrophages are the predominant HLA-DR expressing antigen presenting cells with little expression elsewhere, while macrophages and T-cells predominate cellular crescents. End-stage sclerotic glomeruli are encircled by an acellular fibro-epithelial Bowman's space surrounded by immune infiltrates, all enmeshed in fibronectin. Proliferative LN also shows signs indicative of epithelial to mesenchymal plasticity of tubular cells and parietal epithelial cells. IMC enabled proteomics is a powerful tool to delineate the spatial architecture of LN at the protein level.


Subject(s)
Lupus Nephritis , Humans , Proteomics , Kidney Glomerulus/metabolism , Kidney/metabolism , Image Cytometry
SELECTION OF CITATIONS
SEARCH DETAIL
...