Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Biomolecules ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062524

ABSTRACT

A new class of pyrazolylmethylene-2-thioxoimidazolidin-4-one derivatives 3a-p were rationally designed and synthesized with the aim of exploring their potential as treatments for prostate cancer. The synthesized compounds 3a-p were biologically analyzed for their anticancer effects against AR+LNCaP, AR-PC-3, and Wi38 cell lines. The observed IC50 values against AR+LNCaP ranged between 10.27 ± 0.14 and 109.72 ± 2.06 µM after 24 h of incubation. Compounds 3i-k, 3m, and 3o-p recorded IC50 values of 05.22 ± 0.12 to 11.75 ± 0.07 µM after 48 h incubation in the presence of 1 nM DHT, with higher selectivity towards AR+LNCaP. Moreover, compounds 3i and 3k significantly induced Caspase 3 accumulation, reduced DNA content at the various stages of the cell cycle, and ultimately caused AR+LNCaP cell growth arrest, as confirmed by cell apoptosis assays. These findings suggest that these analogues of androgen receptor blockers have promising potential for further investigation as effective treatments for prostate cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Design , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Imidazolidines/pharmacology , Imidazolidines/chemical synthesis , Imidazolidines/chemistry , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Androgens/pharmacology , Androgens/chemistry
2.
Chem Biodivers ; 21(1): e202301276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38175829

ABSTRACT

Candidiasis is one of the most serious microbial infections in the world. One of the main virulence factors for Candida albicans is the crucial secretion of aspartic proteases (Saps). Saps are hydrolytic enzymes that play a major role in many fungal pathophysiological processes as well as in many levels of the associations between the fungus and its host. In this work, we report on the synthesis, characterization, and anti-candida agent evaluation of a family of 13 imidazolidine-based aspartate protease inhibitors. In vitro and in silico enzyme inhibition studies have confirmed these compounds' ability to inhibit fungal aspartate protease. Based on the molecular mechanistic value scores from molecular docking and MD simulations, we selected the top compounds 5b (binding energy -13.90 kcal/mol) and 5m (binding energy -12.94 kcal/mol) from among 5a-l based on the molecular mechanistic value scores from molecular docking and MD simulations for use in in vitro validations. In the results, imidazolidine derivatives showed strong aspartic protease inhibition activity. In conclusion, compounds 5b and 5m were found as potent anti-candida agents and screened for further pre-clinical and clinical validations.


Subject(s)
Aspartic Acid Proteases , Imidazolidines , Nitroimidazoles , Molecular Docking Simulation , Aspartic Acid/pharmacology , Protease Inhibitors/pharmacology , Candida albicans , Candida , Imidazoles/pharmacology , Nitroimidazoles/pharmacology , Imidazolidines/pharmacology
3.
Rev. Inst. Med. Trop. Säo Paulo ; 59: e8, 2017. tab, graf
Article in English | LILACS | ID: biblio-842798

ABSTRACT

ABSTRACT Introduction: Schistosomiasis is an infectious parasitic disease caused by trematodes of the genus Schistosoma, which threatens at least 258 million people worldwide and its control is dependent on a single drug, praziquantel. The aim of this study was to evaluate the anti-Schistosoma mansoni activity in vitro of novel imidazolidine derivatives. Material and methods: We synthesized two novel imidazolidine derivatives: (LPSF/PTS10) (Z)-1-(2-chloro-6-fluorobenzyl)-4-(4-dimethylaminobenzylidene)-5-thioxoimidazolidin-2-one and (LPSF/PTS23) (Z)-1-(2-chloro-6-fluoro-benzyl)-5-thioxo-4-(2,4,6-trimethoxy-benzylidene)-imidazolidin-2-one. The structures of two compounds were determined by spectroscopic methods. During the biological assays, parameters such as motility, oviposition, mortality and analysis by Scanning Electron Microscopy were performed. Results: LPSF/PTS10 and LPSF/PTS23 were considered to be active in the separation of coupled pairs, mortality and to decrease the motor activity. In addition, LPSF/PTS23 induced ultrastructural alterations in worms, after 24 h of contact, causing extensive erosion over the entire body of the worms. Conclusion: The imidazolidine derivatives containing the trimetoxy and benzylidene halogens showed promising in vitro schistosomicidal activity.


Subject(s)
Humans , Animals , Mice , Imidazolidines/pharmacology , Peripheral Blood Stem Cells/drug effects , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Imidazolidines/chemical synthesis , Imidazolidines/toxicity , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Schistosoma mansoni/ultrastructure , Schistosomicides/chemical synthesis , Schistosomicides/toxicity , Time Factors
4.
Mem. Inst. Oswaldo Cruz ; 101(supl.1): 313-316, Oct. 2006. tab, graf
Article in English | LILACS | ID: lil-441265

ABSTRACT

The emergence of strains of Schistosoma resistant to praziquantel has drawn attention to the search for new schistosomacide drugs. Imidazolidinic derivatives have performed outstandingly against adult S. mansoni worms when evaluated in vitro. The molecular modification of imidazolidine by way of bioisosteric replacement gives rise to variations in its biological response. This study verifies the potential of substituent groups in the derivatives (Z)3-benzyl-5-(2-fluoro-benzylidene)-imidazolidine-2,4-dione NE4, 3-benzyl-5-(4-chloro-arylazo)-4-thioxo-imidazolidin -2-ona PT5, 3-benzyl-5-(3-fluoro-benzylidene)-1-methyl-2-thioxo-imidazolidin-4-one JT53; 3-benzyl-1-methyl-5-(4-methyl-benzylidene)-2-thioxo-imidazolidin-4-one JT63; 3-benzyl-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo -imidazolidin-4-one JT68; 3-(4-chloro-benzyl)-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo-imidazolidin-4-one JT69; 3-(4-phenyl-benzyl)-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo-imidazolidin-4-one JT72 by determining the viability in vitro of adult S. mansoni worms in the presence of these derivatives. The susceptibility of the worms obtained from mice and kept in culture in the presence of different concentrations was determined by way of schistosomacide kinetic, observed every 24 h over a period of eight days. The results show that the worms were more sensitive to the PT5 derivative at a concentration of 58 æM which killed 100 percent of the worms after 24 h of contact, also giving rise to alterations in the tegument surface of the worms with the formation of bubbles and peeling. These observations suggest a strong electronic contribution of the arylazo grouping in the biological response.


Subject(s)
Animals , Female , Male , Mice , Imidazolidines/pharmacology , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Imidazolidines/chemical synthesis , Parasitic Sensitivity Tests , Schistosomicides/chemical synthesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL