Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 132: 111923, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565041

ABSTRACT

In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.


Subject(s)
Imiquimod , Iridoids , Neovascularization, Pathologic , Psoriasis , Skin , Animals , Male , Mice , Angiogenesis , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Imiquimod/toxicity , Iridoids/pharmacology , Iridoids/therapeutic use , Keratinocytes/drug effects , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/pathology , Skin/pathology , Skin/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Toxicol Appl Pharmacol ; 479: 116707, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37783235

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), which is a widely used phthalate (PAE), has recently received public attention owing to it causing health problems. The aim of this study was to elucidate the aggravating effects of DEHP on psoriasis and skin toxicity. Human keratinocyte (HaCaT) cells were treated with gradient concentrations of DEHP, and mice with imiquimod (IMQ)-induced psoriasiform dermatitis were hypodermically injected with 40 µg/kg/day of DEHP for seven consecutive days. The skin condition was assessed based on the psoriasis area and severity index score, which indicated the deterioration of IMQ-induced psoriasis-like skin lesions after DEHP exposure. To further analyze the effect of DEHP on psoriasis, the proliferation, inflammation, and tight junction (TJ) damage were examined, which correlated with the development and severity of psoriasis. The results showed that DEHP promoted proliferation both in vivo and in vitro, which manifested as epidermal thickening; an increase in cell viability; upregulation of Ki67, CDK2, cyclinD1, and proliferating cell nuclear antigen; and downregulation of p21. An excessive inflammatory response is an important factor that exacerbates psoriasis, and our results showed that DEHP can trigger the release of inflammatory cytokines as well as the infiltration of T cells. TJ disorders were found in mice and cells after DEHP treatment. Additionally, p38 mitogen-activated protein kinase (MAPK) was strongly activated during this process, which may have contributed to skin toxicity caused by DEHP. In conclusion, DEHP treatment promotes proliferation, inflammation, TJ disruption, and p38 MAPK activation in HaCaT cells and psoriasis-like skin lesions.


Subject(s)
Diethylhexyl Phthalate , Psoriasis , Skin Diseases , Mice , Animals , Humans , Diethylhexyl Phthalate/toxicity , Psoriasis/metabolism , Skin Diseases/chemically induced , Imiquimod/toxicity , Inflammation/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Skin
3.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37844410

ABSTRACT

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Subject(s)
Glucocorticoids , Psoriasis , Humans , Animals , Mice , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Toll-Like Receptor 7/metabolism , Transcriptome , Psoriasis/pathology , Imiquimod/toxicity , Immunosuppression Therapy , Biomarkers/metabolism , Skin/metabolism
4.
Immun Inflamm Dis ; 11(8): e967, 2023 08.
Article in English | MEDLINE | ID: mdl-37647442

ABSTRACT

BACKGROUND: As a polyphenolic compound originated from the food spice turmeric, curcumin (CUR) has various pharmacological effects, such as anti-inflammatory, antioxidation, antiproliferative, and antiangiogenic activities. Psoriasis is centered on the overproduction of Th1- and Th2-related cytokines (e.g., interleukin [IL]-23, IL-17, TNF-α, IL-22), which is involved in the occurrence and development of its pathogenesis. However, whether CUR is involved in the treatment of psoriasis and its specific mechanisms are not fully understood. METHODS: In this study, we detected the therapeutic effect of CUR (100 mg/kg/day) on IMQ-induced dermatitis in mice, analyzed by PASI scores, ELISA, HE staining, immunofluorescence. Moreover, we further confirmed the alteration in the relative abundance of the gut microbiota through 16sRNA to explore whether CUR could regulate the gut microbiota of IMQ-induced mice. RESULT: Through intragastric administration, CUR can alleviate psoriasis-like lesions of mice by decreasing PASI scores, reducing the level of IL-6, IL-17A, IL-22, IL-23, TNF-α, and TGF-ß1, promoting the expression of IL-10. Moreover, 16sRNA sequencing revealed that CUR could regulate the alteration in the abundance alteration of gut microbiota related to inflammation, such as Alistipes, Mucispirillum, and Rikenella at genus level. The correlation analysis further confirmed the close association between important microflora and psoriasis-like inflammation indicators. CONCLUSIONS: CUR exerts the effect of alleviating dermatitis of psoriatic mice by regulating Th-17 related inflammatory factors. Moreover, the changes in gut microbiota via CUR may be another factor of relieving IMQ-induced lesions in mice. Therefore, CUR may be a highly promising candidate for the treatment of psoriasis.


Subject(s)
Curcumin , Dermatitis , Gastrointestinal Microbiome , Animals , Mice , Curcumin/pharmacology , Curcumin/therapeutic use , Imiquimod/toxicity , Tumor Necrosis Factor-alpha , Inflammation/drug therapy , Interleukin-23 , Dermatitis/drug therapy , Dermatitis/etiology
5.
Immun Inflamm Dis ; 11(7): e877, 2023 07.
Article in English | MEDLINE | ID: mdl-37506136

ABSTRACT

INTRODUCTION: A recent study confirmed that thiolutin (THL), as a potent inflammasome inhibitor, plays a promising therapeutic role in multiple inflammatory disease models. However, the effect of THL on psoriasis has not been reported so far. METHODS: A psoriasiform dermatitis model was prepared by applying 5% imiquimod (IMQ) cream on mice. A total of 36 mice were randomly divided into six groups: control, model, model + THL-L/M/H (THL, 1/2.5/5 mg/kg/day), model + methotrexate (1 mg/kg/day). Psoriasis area and severity index (PASI) scores were observed and calculated. The histological changes in skin, liver, and kidney tissues were observed by hematoxylin and eosin staining. Alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and blood creatinine were measured by automatic biochemistry analyzer. The size of the spleens was determined, and the proportion of Foxp3 + CD4+ regulatory T (Treg) cells in the spleens was tested by flow cytometry. The proinflammatory factors and nucleotide oligomerization domain nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome protein levels were examined by reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry, respectively. RESULTS: THL administration preeminently reduced the thickness, scaling, and erythema of the skin lesions, alleviated IMQ-induced psoriasiform lesions in mice, reduced the PASI score, and ameliorated histopathological changes in mouse skin. The spleen index was decreased by almost half and the proportion of Foxp3 + CD4+ Treg cells was increased after intervention by THL. THL intervention did not affect liver and kidney function, but decreased the expression levels of proinflammatory factors and NLRP3 inflammasome in the skin of psoriatic mice. CONCLUSIONS: THL may alleviate IMQ-induced psoriasis-like manifestations in mice by inhibiting NLRP3 inflammasome.


Subject(s)
Dermatitis , Psoriasis , Mice , Animals , Imiquimod/toxicity , Imiquimod/therapeutic use , Inflammasomes/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Forkhead Transcription Factors
6.
J Ethnopharmacol ; 317: 116807, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37331449

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liangxue Jiedu formula (LXJDF) is an effective traditional Chinese medicine (TCM) formula for treating psoriasis of blood-heat syndrome and has been used in clinics for decades. AIM OF THE STUDY: This study aimed to discover the mechanism of LXJDF in psoriasis and the circadian clock by network pharmacology and experimental studies. MATERIALS AND METHODS: The compounds of LXJDF were obtained from the TCMSP and BATMAN-TCM databases. The genes related to psoriasis and circadian rhythm/clock were identified by the OMIM and GeneCards databases. Then, target genes were integrated by Venn and analyzed by the String, CytoNCA, DAVID (GO and KEGG) databases, and the network was constructed using Cytoscape. Mice were raised under light disturbance for fourteen days. On the eighth day, mouse dorsal skin was shaved and smeared with 62.5 mg 5% imiquimod at 8:00 (ZT0) for six successive days. Mice were randomly divided into the model, LXJDF-H (49.2 g/kg·bw), LXJDF-L (24.6 g/kg·bw), and positive drug (dexamethasone) groups. Other mice were smeared with Vaseline under the normal light cycle as the control. The drug of each group was administered at 10:00 (ZT2) and 22:00 (ZT14). The skin lesions were observed, and PASI was scored daily. HE and immunofluorescence were used to measure pathological morphology. Th17 cytokines in serum and skin were measured by flow cytometry and qPCR. Circadian clock gene and protein expression levels were determined by qPCR and Western blotting. RESULTS: We found 34 potential targets of LXJDF in the treatment of psoriasis and circadian rhythm and confirmed their importance by topology analysis. KEGG pathway analysis revealed that the two major pathways were Th17 cell differentiation and the HIF-1 signaling pathway. At ZT2 and ZT14, LXJDF improved IMQ-induced light disturbance mouse skin lesions, including alleviating scales, erythema, and infiltration, reducing PASI, and inhibiting keratinocyte hyperproliferation and parakeratosis. LXJDF reduced IL-17A, IL-17F, TNF-α, and IL-6 in serum at ZT2 and increased IL-10 at ZT2 and ZT14. LXJDF downregulated the expression of IL-17A and IL-17F in skin. At ZT2, LXJDF significantly upregulated CLOCK and REV-ERBα expression and downregulated HIF-1α expression. At ZT14, LXJDF decreased HIF-1α and RORγt expression and significantly increased REV-ERBα expression. CONCLUSION: LXJDF improves psoriasis dermatitis with circadian rhythm disorders by regulating Th17 cell differentiation.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Interleukin-17/genetics , Interleukin-17/metabolism , Imiquimod/toxicity , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Cell Differentiation , Dermatitis/drug therapy , Disease Models, Animal , Th17 Cells , Mice, Inbred BALB C
7.
Life Sci ; 326: 121788, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37230377

ABSTRACT

AIM: Psoriasis is one of the most common dermatological disorders, characterized by increased epidermal hyperplasia and immune cell infiltration. Psychological stress has been reported to contribute to the severity, aggravation, and relapse of psoriasis. However, the exact mechanism involved in psychological stress's impact on psoriasis is still unclear. We aim to investigate the role of psychological stress in psoriasis from a transcriptomic and metabolomic perspective. MAIN METHOD: We developed a chronic restrain stress (CRS)-imiquimod (IMQ)-induced psoriasis-like mouse model and performed a comprehensive comparative transcriptomic and metabolic analysis with control mice, CRS-treated mice, and IMQ-treated mice to investigate how psychological stress affects psoriasis. KEY FINDING: We found that CRS-IMQ-induced psoriasis-like mice showed significant exacerbation of psoriasis-like skin inflammation compared with mice treated with IMQ only. Mice of the CRS + IMQ group showed increased expression of keratinocyte proliferation and differentiation genes, differential regulation of cytokines, and promotion of linoleic acid metabolism. Correlation analysis of differentially expressed genes in the CRS-IMQ-induced psoriasis-like mice and human psoriasis datasets compared with respective controls revealed 96 overlapping genes of which 30 genes showed consistent induced or repressed expression in all human and mouse datasets. SIGNIFICANCE: Our study provides new insights into the effects of psychological stress on psoriasis pathogenesis and the mechanisms involved, which provides clues for development of therapeutics or biomarkers.


Subject(s)
Aminoquinolines , Psoriasis , Mice , Humans , Animals , Imiquimod/toxicity , Aminoquinolines/toxicity , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/genetics , Sequence Analysis, RNA , Disease Models, Animal , Skin
8.
J Appl Toxicol ; 43(9): 1284-1292, 2023 09.
Article in English | MEDLINE | ID: mdl-36908085

ABSTRACT

Citrinin, a mycotoxin produced by Penicillium citrinum and Penicillium verrucosum, mainly contaminates cereals. The aim of study was to investigate the novel immunoreactive effect of citrinin using a mouse model of psoriasis. A mouse model of psoriasis was generated by topical application of 5% imiquimod in female BALB/c mice. Standard rodent diet and rice samples with 3 ppm of citrinin were mixed to obtain a final citrinin concentration of 0.3 ppm, and a citrinin-contaminated diet was fed to mice daily. Skin thickness, scratching behavior, and trans epidermal water loss (TEWL) were monitored continuously during the imiquimod application. Immediately after the final imiquimod application, ear skin and auricular lymph node (LN) were sampled for further analysis. Only a slight increase was observed in skin thickness in the citrinin exposure group; however, citrinin exposure significantly exacerbated hyperkeratinization and inflammatory cell infiltration in histological evaluation. TEWL, which is representative of cutaneous barrier function, was significantly increased by citrinin exposure. In terms of immune function, the number of immune cells in LN (T cells and dendritic cells) and gene expression of interleukin (IL)-17 in skin tissue were significantly increased by citrinin exposure. Direct interaction of dendritic cells (DCs) in citrinin-induced psoriasis development was further examined by proinflammatory cytokine determination in THP-1 cells and murine bone marrow derived DCs. IL-6 and/or tumor necrosis factor α were significantly increased by citrinin exposure. Taken together, our results imply that oral exposure to citrinin exacerbates the symptoms of a mouse model of psoriasis via direct activation of DCs.


Subject(s)
Citrinin , Psoriasis , Female , Animals , Mice , Imiquimod/toxicity , Citrinin/toxicity , Citrinin/metabolism , Aminoquinolines/toxicity , Aminoquinolines/metabolism , Dendritic Cells , Psoriasis/chemically induced , Skin , Disease Models, Animal , Mice, Inbred BALB C
9.
Immunopharmacol Immunotoxicol ; 45(2): 133-139, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36305632

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease that is currently incurable and causes long-term distress to patients. Therefore, there is an urgent need to develop safe and effective psoriatic drugs. Eupatilin is a natural flavone, that has a variety of pharmacological effects. However, the anti-psoriatic effect of eupatilin and its underlying mechanism remain unclear. METHODS: HaCaT cells were treated with 20 µg/mL LPS for 24 h to establish the proliferation model of HaCaT cells. Cell viability was measured by MTT assay. Western blotting was used to detect the expression of p-p38 MAPK, p38 MAPK, p-NF-κB p65 and NF-κB p65 in HaCaT cells. Imiquimod (IMQ) was used to induce psoriasis-like mouse model. Psoriasis Area Severity Index (PASI) score was used to evaluate the degree of skin injury, H&E staining was used to observe the pathological damage of skin tissues, and the expression levels of TNF-α, IL-6, IL-23 and IL-17 in the serum were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: Eupatilin could inhibit the hyperproliferation of LPS-stimulated HaCaT cells through p38 MAPK/NF-κB signaling pathway in vitro. In psoriatic mice, eupatilin could significantly reduce skin erythema, scales and thickening scores, ameliorate skin histopathological lesions, and decrease the levels of TNF-α, IL-6, IL-23 and IL-17 in the serum. CONCLUSION: Eupatilin had a good anti-proliferative effect in LPS-stimulated HaCaT cells, and significantly alleviated IMQ-induced psoriasis-like lesions in mice. Eupatilin was a promising drug for the treatment of psoriasis.


Subject(s)
Psoriasis , Skin Diseases , Animals , Mice , Imiquimod/toxicity , NF-kappa B/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , MAP Kinase Signaling System , Keratinocytes , Cell Proliferation , p38 Mitogen-Activated Protein Kinases/metabolism , Interleukin-23 , Mice, Inbred BALB C , Disease Models, Animal
10.
J Nat Med ; 77(1): 188-201, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36378401

ABSTRACT

Nowadays, approximately 3% of the world's population suffers from psoriasis, an inflammatory dermatosis with high recurrence. Tryptanthrin (TRYP) is a natural alkaloid that possesses anti-inflammatory activities on multiple diseases. The present study aimed to unravel whether TRYP could relieve psoriasis and how it works. Imiquimod (IMQ)-induced psoriatic mouse models were administered saline (model), TRYP (25 and 100 mg/kg), or methotrexate (MTX, 1 mg/kg) and considered as the positive control. TNF-α-induced keratinocytes (HaCaT cells) with TRYP (0, 10, 20 and 50 nM) were used for in vitro verification. Psoriasis area severity index (PASI) and spleen index were evaluated. Th17 cell infiltration in both spleens and lymph nodes was detected by flow cytometry. The expression levels of inflammatory cytokines, glutathione (GSH), malondialdehyde (MDA) and catalase (CAT), as well as superoxide dismutase (SOD), were examined by ELISA, while the NF-κB/MAPK/Nrf2 pathways-related proteins were determined by western blot. TRYP significantly attenuated psoriatic skin lesions, increased GSH, SOD, and CAT levels, reduced spleen index, accumulation of MDA, the abundance of Th17 cells in both the spleen and lymph nodes, and secretion of inflammatory cytokines in IMQ-induced psoriatic mouse models. Mechanically, TRYP suppressed IMQ-activated NF-κB (IκB and p65), MAPK (JNK, ERK1/2, and p38), and activated Nrf2 signaling pathways. Similar alterations for inflammation and oxidative stress parameters and NF-κB/MAPK/Nrf2 pathways were also observed in TNF-α-treated HaCaT cells upon TRYP treatment. Our findings suggested TRYP is effective in protecting against inflammation and oxidative stress in psoriasis-like pathogenesis by modulating the NF-κB/MAPK/Nrf2 pathways.


Subject(s)
NF-kappa B , Psoriasis , Animals , Mice , Cytokines/metabolism , Disease Models, Animal , Imiquimod/toxicity , Inflammation/chemically induced , Inflammation/drug therapy , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Psoriasis/chemically induced , Psoriasis/drug therapy , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction
11.
Chem Biol Interact ; 365: 110122, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36002070

ABSTRACT

Psoriasis is a common chronic autoinflammatory/autoimmune skin disease associated with elevated pro-inflammatory cytokines. The pivotal role of interleukin (IL)-1ß and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of psoriasis has been widely described. Accordingly, the suppression of NLRP3-dependent IL-1ß release is a potential therapy for psoriasis. Repurposing marketed drugs is a strategy for identifying new inhibitors of NLRP3 inflammasome activation. Herein, chlorquinaldol (CQD), a historic antimicrobial agent used as a topical treatment for skin and vaginal infections, was found to have a distinct effect by inhibiting NLRP3 inflammasome activation at concentrations ranging from 2 to 6 µM. CQD significantly suppressed apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) oligomerization, NLRP3-ASC interaction, and pyroptosis in macrophages. The levels of cleaved IL-1ß and caspase-1 were reduced by CQD in the cell lysates of macrophages, suggesting that CQD acted on upstream of pore formation in the cell membrane. Mechanistically, CQD reduced mitochondrial reactive oxygen species production but did not affect the nuclear factor-κB (NF-κB) pathway. Intraperitoneal administration of CQD (15 mg/kg) for 6 days was found to improve the skin lesions in the imiquimod-induced psoriatic mouse model (male C57BL/6 mice), while secretion of pro-inflammatory cytokines (IL-17 and IL-1ß) and keratinocyte proliferation were significantly suppressed by CQD. In conclusion, CQD exerted inhibitory effects on NLRP3 inflammasome activation in macrophages and decreased the severity of psoriatic response in vivo. Such findings indicate that the repurposing of the old drug, CQD, is a potential pharmacological approach for the treatment of psoriasis and other NLRP3-driven diseases.


Subject(s)
Chlorquinaldol , Dermatitis , Psoriasis , Animals , Carrier Proteins/metabolism , Caspase 1/metabolism , Chlorquinaldol/adverse effects , Cytokines/metabolism , Female , Imiquimod/toxicity , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotides/adverse effects , Nucleotides/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Pyrin Domain
12.
Ecotoxicol Environ Saf ; 243: 114008, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36029575

ABSTRACT

Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Psoriasis , Animals , Male , Mice , Imiquimod/toxicity , Inflammation/chemically induced , Mice, Inbred C57BL , Particulate Matter/toxicity , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Psoriasis/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A
13.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35562873

ABSTRACT

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) has been used as an adjunct therapy for psoriasis due to its anti-inflammatory properties. Free fatty acid receptor 4 (FFA4 or GPR120) is a receptor-sensing n-3 PUFA. In the present study, we examined whether FFA4 acted as a therapeutic target for n-3 PUFA in psoriasis therapy. Experimentally, psoriasis-like skin lesions were induced by treatment with imiquimod for 6 consecutive days. A selective FFA4 agonist, Compound A (30 mg/kg), was used in FFA4 WT and FFA4 KO mice. Imiquimod-induced psoriasis-like skin lesions, which present as erythematous papules and plaques with silver scaling, as well as markedly elevated IL-17/IL-23 cytokine levels in skin tissues, were significantly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Enlarged lymph nodes and spleens, as well as imiquimod-induced, elevated IL-17/IL-23 cytokine levels, were also strongly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Imiquimod-induced increases in the CD4+IL-17A+ T cell population in lymph nodes and spleens were suppressed by Compound A treatment in FFA4 WT mice; however, this was not seen in FFA4 KO mice. Furthermore, compound A suppressed the differentiation of CD4+ naïve T cells from splenocytes into TH17 cells in an FFA4-dependent manner. In conclusion, we demonstrated that the activation of FFA4 ameliorates imiquimod-induced psoriasis, and the suppression of the differentiation of TH17 cells may partly contribute to its efficacy. Therefore, we suggest that FFA4 could be a therapeutic target for psoriasis therapy.


Subject(s)
Fatty Acids, Omega-3 , Psoriasis , Animals , Cytokines/therapeutic use , Disease Models, Animal , Fatty Acids, Nonesterified/therapeutic use , Fatty Acids, Omega-3/therapeutic use , Imiquimod/toxicity , Interleukin-17/genetics , Interleukin-23 , Mice , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Skin/pathology
14.
Histol Histopathol ; 37(7): 655-664, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35297032

ABSTRACT

Lupus nephritis (LN) is a renal disease presented in systemic lupus erythematosus (SLE) and is divided into 6 classes based on histopathological criteria set by the International Society of Nephrology/Renal Pathology Society. Major mouse models of SLE usually develop class III/IV LN, which are characterized by subendothelial deposits and endocapillary hypercellularity. We examined the pathological features of kidneys in a mouse model of SLE induced by a toll-like receptor 7 agonist, imiquimod (IMQ). In experiment 1, eleven-female FVB/NJcl wild type mice were treated with IMQ on their ear skin 3 times per week. Plasma anti-dsDNA increased from 2 weeks after first IMQ treatment and 2 mice exhibited nephrotic syndrome from 6 weeks. Histopathology revealed eosinophilic mesangial deposits in all mice from 4 weeks. Subsequently, podocytes showed enlargement with vacuolation and their numbers decreased in 6 mice. There was no infiltration of inflammatory cells, subendothelial deposits in glomeruli, or subepithelial deposits in glomeruli. In experiment 2 using 10 mice at 8 weeks after IMQ treatment, the mesangial deposits were observed in all mice and confirmed to be IgG, IgA, IgM, C1q and C3 by immunofluorescence, which corresponds to class II LN. Foot process effacement was detected by transmission electron microscopy and was considered to lead to proteinuria. These mice exhibited pathological characteristics corresponding to class II LN and podocyte injury, which make it distinct from other mouse models of SLE.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Podocytes , Animals , Complement C1q , Female , Imiquimod/toxicity , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/chemically induced , Lupus Nephritis/pathology , Mice , Podocytes/pathology , Toll-Like Receptor 7
15.
Pharmazie ; 77(2): 48-53, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35209963

ABSTRACT

Psoriasis is a complex chronic skin inflammatory disease characterized by abnormal proliferation, differentiation of keratinocytes and infiltration of lymphocytes and neutrophils. The tripeptide KdPT, structurally derived from the C-terminal amino acid of alpha-melanocyte-stimulating hormone, has shown a significant anti-inflammatory effect on mild-to-moderate active ulcerative colitis in previous reports. In this research, we investigated whether KdPT could consistently ameliorate disease in a mouse model of imiquimod (IMQ)-induced psoriasis by inhibiting proliferation and inflammation response. We demonstrated that KdPT in vitro significantly inhibited the proliferation of human keratinocytes and endothelial cells, and also downgraded the expression of inflammatory factors in LPS-induced RAW264.7, including IL-6, TNF-α and NO. In vivo, KdPT attenuates the severity of IMQ-induced psoriasis-like phenotype in mice. Such an effect was achieved by downregulating the expression of the inflammatory cytokines interleukin (IL)-6, TNF-α, and the proliferation marker Ki67. These results suggested that KdPT might be useful in the treatment for psoriasis.


Subject(s)
Psoriasis , Tumor Necrosis Factor-alpha , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Proliferation , Cytokines , Disease Models, Animal , Endothelial Cells , Imiquimod/toxicity , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6/pharmacology , Keratinocytes , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin
16.
J Food Biochem ; 46(5): e14053, 2022 05.
Article in English | MEDLINE | ID: mdl-35218026

ABSTRACT

As a common chronic skin disease, psoriasis is characterized by the involvement of congenital acquired inflammatory immune diseases. In the study, our results indicated the effect of ginsenoside Rg1 on psoriasis-like skin and the potential protection mechanisms that have not yet been investigated. In vivo, psoriasis-like skin mice model was induced by imiquimod (IMQ), then was treated by ginsenoside Rg1 for consecutive 4 weeks to evaluate its effect, respectively. In vitro, M5 cocktail treatment of human immortalized keratinocyte HaCaT-induced psoriasis-like skin cell model, which was exposed to ginsenoside Rg1. The inflammatory cell infiltration, expression level of keratinocyte proliferation marker Ki67, keratinocyte proliferation, inflammatory cytokines, and ROS/NLRP3 pathway-related proteins in vivo and in vitro were examined by hematoxylin and eosin, immunohistochemistry, ELISA, CCK-8, flow cytometry, and western blot. All results demonstrated that ginsenoside Rg1 attenuated the injury of psoriasis-like skin, which inhibited the proliferation of skin keratinocytes and the activation of NLRP3 inflammasome and the level of inflammatory factors such as IL-1ß and IL-18, and decreased the level of Ki67, NLRP3, and caspase-1 in mice and HaCaT. Furthermore, NLRP3 overexpression attenuates the effect of ginsenoside Rg1 on M5 cocktail-induced proliferation and NLRP3 inflammasomes in HaCaT. These results demonstrated that ginsenoside Rg1 could suppress the ROS/NLRP3 pathway to treat psoriasis-like skin. PRACTICAL APPLICATIONS: This is the very first study to explore the efficacy of ginsenoside Rg1 against psoriasis-like skin lesions to reveal the underlying mechanism. In this paper, the detection of skin histopathological analysis, CCK-8, flow cytometry, western blot, and ELISA analysis shows that ginsenoside Rg1 has preventive effect on psoriasis caused by imiquimod or M5 cocktail through inhibiting NLRP3 inflammasome, which helps in the development of novel nutraceutical/functional food against psoriasis and thus could improve the quality of life in psoriasis patients.


Subject(s)
Inflammasomes , Psoriasis , Animals , Cell Proliferation , Ginsenosides , Humans , Imiquimod/toxicity , Keratinocytes , Ki-67 Antigen , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Psoriasis/drug therapy , Quality of Life , Reactive Oxygen Species , Sincalide/metabolism
17.
Mediators Inflamm ; 2022: 5782922, 2022.
Article in English | MEDLINE | ID: mdl-35069008

ABSTRACT

Itch is one of the major clinical manifestations of psoriasis, which is closely related with neurogenic inflammation and difficult to control. Colquhounia Root (CR) is a Chinese herb exhibiting broad bioactivities on anti-inflammation. This study was designed to explore the antipsoriatic and anti-itch potential of CR and its underlying mechanisms. Mice in a model of imiquimod-induced psoriasiform dermatitis were treated topically with CR for 7 days, and the severity of skin lesions and itch was significantly ameliorated. CR reduced the inflammatory cell infiltration, as well as mast cells in skins. Particularly, the expression of inflammatory cytokines and chemokine including Il17a, Il22, and Ccl20 and itch-related molecules such as SP, CGRP, and NGF in lesions were decreased in diseased mice upon application with CR. The normal human epidermal keratinocytes were stimulated with the M5 cytokine cocktail, the mixture of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α, and cell viability and mRNA expression levels of inflammatory factors and itch-related molecules were measured after being treated with CR. We found that CR inhibited both cell hyperproliferation and overexpression of inflammatory cytokines and itch-related molecules in vitro. Altogether, we conclude that CR relieves psoriatic lesions and itch via controlling immunological and neurogenic inflammation.


Subject(s)
Eczema , Psoriasis , Animals , Disease Models, Animal , Imiquimod/toxicity , Inflammation/metabolism , Mice , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin/metabolism
18.
J Ethnopharmacol ; 285: 114895, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34875348

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Datura metel L. has been used as an anesthetic in clinic for more than 1800 years in China, and the main efficacy of D. metel L. flower is relieving asthma and cough, relieving spasm and relieving pain. From 1978 to 1980, Datura metel L. was used as an anesthetic agent and occasionally cured psoriasis patients during anesthesia clinically, and our group confirmed that the effective portion is total withanolides (YWS). Moreover, the new drug "Datura metel L. capsule" composed of YWS has since been approved and used for the treatment of more than 3,000 psoriasis patients, with efficacy and cure rates greater than 90% and 65%. However, the immunological mechanism has not been elucidated. AIM OF THE STUDY: Nowadays, although total withanolides from Datura metel L. have a better clinical efficacy in the treatment of psoriasis, there is a lack of overall understanding of the mechanism of their treatment, especially about some immune cells and proteins closely related to psoriasis and their relationship in executive function and biological significance. This study focused on investigating the mechanism of psoriasis treatment by YWS and determined the biochemical processes in the treatment of psoriasis based on Treg/Th17 axis cell-mediated bidirectional immunoregulatory functions, which provides an important scientific basis for understanding the mechanism underlying the treatment of psoriasis by YWS. MATERIALS AND METHODS: The effects of YWS on the lesion pathology of IMQ-induced psoriasis mice and the underlying molecular mechanism were assessed directly using HE staining, the PASI score and the animal body mass. We also investigated the effects of YWS on the Treg/Th17 axis and their critical functions in psoriasis pathogenesis via molecular biological methods. Finally, we performed differential proteomics analysis on skin in IMQ-induced psoriasis mice to clarify the effect of YWS by incorporates mass spectrometry-bioinformatics and annotated the functions and pathways associated with the differential proteins through GO enrichment, KEGG pathway analysis and PPI networks analysis, respectively. RESULTS: YWS regulated the imbalance of the Treg/Th17 axis. And proteomic analysis showed that YWS up-regulated 46 and down-regulated 37 proteins. According to the bioinformatics analysis, the improvement of Treg/Th17 imbalance may be the key immunological mechanism of YWS in the treatment of psoriasis by up-regulating the butyrate metabolism pathway, down-regulating leukocyte migration, inhibiting the phagocytic function of natural killer cells, suppressing osteoclast differentiation and interfering with chemokine activity, and the critical proteins involved are Lyn, HMGCS2, ABAT, ITGß2, PRKCß, MMP9, NCF1, JUNß, and Hck. CONCLUSION: This research clarified that the improvement of the imbalance of the Treg/Th17 axis may be the key immunological mechanism of YWS in the treatment of psoriasis through metabolic pathways and influencing key proteins. The results not only expand the therapeutic targets and approaches for the treatment of psoriasis, which is a challenging and complex disease, but also deepens the understanding of the mechanism of YWS in the treatment of psoriasis and other important conditions to open up a new way of thinking for research on YWS in the treatment of psoriasis.


Subject(s)
Imiquimod/toxicity , Inflammation/drug therapy , Psoriasis/drug therapy , Withanolides/therapeutic use , Animals , Computational Biology , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Interferon Inducers/toxicity , Male , Mice , Mice, Inbred BALB C , Protein Interaction Maps , Psoriasis/chemically induced , Random Allocation , Signal Transduction , Up-Regulation/drug effects , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
19.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884834

ABSTRACT

Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis' EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis' EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis' EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble ß1/ß2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.


Subject(s)
Extracellular Vesicles/metabolism , Psoriasis/therapy , Staphylococcus epidermidis/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , Disease Models, Animal , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Humans , Imiquimod/toxicity , Interleukin-1/antagonists & inhibitors , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Neutrophil Infiltration , Psoriasis/chemically induced , Psoriasis/pathology , Skin/metabolism , Skin/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
Mol Med Rep ; 24(6)2021 12.
Article in English | MEDLINE | ID: mdl-34664681

ABSTRACT

Psoriasis, a chronic inflammatory skin disease, is characterized by the excessive proliferation and impaired differentiation of epidermal keratinocytes and is accompanied by the increased infiltration of inflammatory cells. The condition requires long­term treatment and has no definitive cure. Hence, supplements and therapeutic agents have been intensely investigated. Gomisin M2 (GM2), a lignan extracted from Schisandra chinensis (Turcz). Baill. (Schisandraceae; S. chinensis), has demonstrated diverse pharmacological properties, including anticancer, anti­inflammatory and antiallergic effects. Based on these findings, the present study examined the effects of GM2 on an imiquimod (IMQ)­induced psoriasis mouse model and on keratinocytes stimulated by tumor necrosis factor (TNF)­α and interferon­Î³. IMQ was topically applied to the back skin of mice for 7 consecutive days, and the mice were orally administered CD. These results showed that the oral administration of GM2 suppressed the symptoms of psoriasis, as evidenced by reductions in skin thickness, psoriasis area severity index scores for psoriasis lesions, transepidermal water loss and myeloperoxidase (MPO)­associated cell infiltration. Furthermore, GM2 reduced the pathologically increased levels of immunoglobulin G2a, MPO and TNF­α in the serum and T helper (Th)1 and Th17 cell populations in the spleen. GM2 decreased the gene expression of inflammatory­related cytokines and chemokines and inhibited the expression of signal transducer and activator of transcription 1 and nuclear factor­κB in the activated keratinocytes. These results suggested that GM2 from S. chinensis is a potential therapeutic candidate to alleviate psoriasis­like skin inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Lignans/pharmacology , Psoriasis/drug therapy , Psoriasis/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Humans , Imiquimod/toxicity , Inflammation/chemically induced , Inflammation/genetics , Interferon-gamma/toxicity , Keratinocytes/drug effects , Keratinocytes/metabolism , Lignans/therapeutic use , Mice, Inbred C57BL , NF-kappa B/metabolism , Psoriasis/chemically induced , Psoriasis/pathology , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Th1 Cells/drug effects , Th17 Cells/drug effects , Tumor Necrosis Factor-alpha/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...