Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.697
Filter
2.
Biomed Res Int ; 2023: 1317998, 2023.
Article in English | MEDLINE | ID: mdl-37206297

ABSTRACT

This study is aimed at investigating the potential molecular features of allergic rhinitis (AR) and identifying gene signatures and related transcription factors using transcriptome analysis and in silico datasets. Transcriptome profiles were obtained using three independent cohorts (GSE101720, GSE19190, and GSE46171) comprising healthy controls (HC) and patients with AR. The pooled dataset (n = 82) was used to identify the critical signatures of AR compared with HC. Subsequently, key transcription factors were identified by a combined analysis using transcriptome and in silico datasets. Gene ontology: bioprocess (GO: BP) analysis using differentially expressed genes (DEGs) revealed that immune response-related genes were significantly enriched in AR compared with HC. Among them, IL1RL1, CD274, and CD44 were significantly higher in AR patients. We also identified key transcription factors between HC and AR using the in silico dataset and found that AR samples frequently express KLF transcription factor 4 (KLF4), which regulates immune response-related genes including IL1RL1, CD274, and CD44 in human nasal epithelial cells. Our integrative analysis of transcriptomic regulation provides new insights into AR, which may help in developing precision management for patients with AR.


Subject(s)
Gene Expression Regulation , Immunity , Kruppel-Like Factor 4 , Rhinitis, Allergic , Rhinitis, Allergic/genetics , Rhinitis, Allergic/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Immunity/genetics , Immunity/immunology , Kruppel-Like Factor 4/genetics , Kruppel-Like Factor 4/immunology , Humans , Gene Expression Regulation/immunology , Gene Expression Profiling , Cell Line
3.
Immunol Rev ; 315(1): 108-125, 2023 05.
Article in English | MEDLINE | ID: mdl-36653953

ABSTRACT

Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.


Subject(s)
CD8-Positive T-Lymphocytes , Immune System , T-Lymphocyte Subsets , Humans , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Human Development/physiology , Immune System/cytology , Immune System/growth & development , Immune System/immunology , Immune System/physiology , Immunity/immunology , Immunity/physiology , T-Lymphocyte Subsets/immunology
4.
J Integr Plant Biol ; 65(5): 1312-1327, 2023 May.
Article in English | MEDLINE | ID: mdl-36633200

ABSTRACT

Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Immunity , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Immunity/genetics , Immunity/immunology , Lectins/genetics , Lectins/immunology , Lectins/metabolism , Plant Immunity/genetics , Plant Immunity/immunology , Protein Kinases/genetics , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Receptors, Mitogen/metabolism
5.
Clin Exp Immunol ; 212(2): 107-116, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36652220

ABSTRACT

The STAT3 story has almost 30 years of evolving history. First identified in 1994 as a pro-inflammatory transcription factor, Signal Transducer and Activator of Transcription 3 (STAT3) has continued to be revealed as a quintessential pleiotropic signalling module spanning fields including infectious diseases, autoimmunity, vaccine responses, metabolism, and malignancy. In 2007, germline heterozygous dominant-negative loss-of-function variants in STAT3 were discovered as the most common cause for a triad of eczematoid dermatitis with recurrent skin and pulmonary infections, first described in 1966. This finding established that STAT3 plays a critical non-redundant role in immunity against some pathogens, as well as in the connective tissue, dental and musculoskeletal systems. Several years later, in 2014, heterozygous activating gain of function germline STAT3 variants were found to be causal for cases of early-onset multiorgan autoimmunity, thereby underpinning the notion that STAT3 function needed to be regulated to maintain immune homeostasis. As we and others continue to interrogate biochemical and cellular perturbations due to inborn errors in STAT3, we will review our current understanding of STAT3 function, mechanisms of disease pathogenesis, and future directions in this dynamic field.


Subject(s)
Immunity , STAT3 Transcription Factor , Humans , Autoimmunity/genetics , Autoimmunity/immunology , Mutation/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Immunity/genetics , Immunity/immunology , Immune System Diseases/genetics , Immune System Diseases/immunology
6.
Braz. J. Pharm. Sci. (Online) ; 59: e21769, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439514

ABSTRACT

Abstract Currently, mucosal vaccine administration has stood out as an easier and non-invasive application method. It can also be used to induce local and systemic immune responses. In the COVID-19 pandemic context, nasal and oral vaccines have been developed based on different technological platforms. This review addressed relevant aspects of mucosal vaccine administration, with emphasis on oral and nasal vaccinations, in addition to the importance of using nanotechnology-based delivery systems to enable these strategies.


Subject(s)
Vaccines/analysis , Vaccination/adverse effects , Nanotechnology/instrumentation , Immunity/immunology
7.
Rev. cuba. pediatr ; 952023. ilus, tab
Article in Spanish | LILACS, CUMED | ID: biblio-1515284

ABSTRACT

Introducción: La síntesis intratecal de anticuerpos contra algunos virus neurotrópicos como sarampión, rubéola y virus varicela zoster en pacientes con esclerosis múltiple, con una frecuencia muy superior a la esperada, llevó a la introducción de la reacción sarampión-rubéola-varicela. La presencia de anticuerpos específicos detectados en el líquido cefalorraquídeo contra dos o más de estos virus apoyó el diagnóstico no solo de la esclerosis múltiple, sino de otras enfermedades autoinmunes que involucran al sistema nervioso central. Objetivo: Identificar la presencia de respuesta inmune intratecal poliespecífica en pacientes pediátricos con proceso neuroinflamatorio independiente del agente biológico involucrado. Presentación de caso: Se estudiaron ocho niños a los cuales, mediante inmunodifusión radial simple y por ensayo inmunoenzimático, se les cuantificaron las concentraciones de inmunoglobulina G y albúmina en suero, y líquido cefalorraquídeo, lo que permitió determinar la síntesis intratecal de inmunoglobulinas. Por métodos inmunoenzimáticos se cuantificaron las concentraciones de IgG específica contra los virus estudiados en suero y líquido cefalorraquídeo, con lo cual se determinó el índice de anticuerpo específico. La reacción sarampión-rubéola-varicela fue positiva en cinco pacientes y los valores medios de este índice se encontraron por encima de 1,5 para citomegalovirus y virus herpes simple. Conclusiones: Se identificaron repuestas neuroinmune antiviral poliespecífica en pacientes pediátricos con proceso neuroinflamatorio(AU)


Introduction: The intrathecal synthesis of antibodies against some neurotropic viruses such as measles, rubella and varicella zoster virus in patients with multiple sclerosis, with a frequency much higher than expected, led to the introduction of the measles-rubella-varicella reaction. The presence of specific antibodies detected in cerebrospinal fluid against two or more of these viruses supported the diagnosis not only of multiple sclerosis, but also of other autoimmune diseases involving the central nervous system. Objective: To identify the presence of polyspecific intrathecal immune response in pediatric patients with neuroinflammatory process independent of the biological agent involved. Case presentation: Eight children were studied and their serum and cerebrospinal fluid immunoglobulin G and albumin concentrations were quantified by simple radial immunodiffusion and enzyme-linked immunosorbent assay to determine intrathecal immunoglobulin synthesis. The concentrations of specific IgG against the viruses studied in serum and cerebrospinal fluid were quantified by enzyme-linked immunosorbent assay methods, thus determining the specific antibody index. The measles-rubella-varicella reaction was positive in five patients and the mean values of this index were found to be above 1.5 for cytomegalovirus and herpes simplex virus. Conclusions: Polyspecific antiviral neuroimmune antiviral responses were identified in pediatric patients with neuroinflammatory process(AU)


Subject(s)
Humans , Adolescent , Immunity/immunology , Antibodies/cerebrospinal fluid
8.
Cell Mol Biol Lett ; 27(1): 105, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36447138

ABSTRACT

BACKGROUND: Pyrimidine metabolism is critical for tumour progression. Uridine-cytidine kinase 2 (UCK2), a key regulator of pyrimidine metabolism, is elevated during hepatocellular carcinoma (HCC) development and exhibits carcinogenic effects. However, the key mechanism of UCK2 promoting HCC and the therapeutic value of UCK2 are still undefined. The aim of this study is to investigate the potential of UCK2 as a therapeutic target for HCC. METHODS: Gene expression matrices were obtained from public databases. RNA-seq, co-immunoprecipitation and RNA-binding protein immunoprecipitation were used to determine the mechanism of UCK2 promoting HCC. Immune cell infiltration level and immune-related functional scores were evaluated to assess the link between tumour microenvironment and UCK2. RESULTS: In HCC, the expression of UCK2 was upregulated in part by TGFß1 stimulation. UCK2 promoted cell cycle progression of HCC by preventing the degradation of mTOR protein and maintaining the stability of PDPK1 mRNA. We also identified UCK2 as a novel RNA-binding protein. Downregulation of UCK2 induced cell cycle arrest and activated the TNFα/NFκB signalling pathway-related senescence-associated secretory phenotype to modify the tumour microenvironment. Additionally, UCK2 was a biomarker of the immunosuppressive microenvironment. Downregulated UCK2 induced a secretory phenotype, which could improve the microenvironment, and decreased UCK2 remodelling metabolism could lower the resistance of tumour cells to T-cell-mediated killing. CONCLUSIONS: Targeting UCK2 inhibits HCC progression and could improve the response to immunotherapy in patients with HCC. Our study suggests that UCK2 could be an ideal target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Uridine Kinase , Humans , 3-Phosphoinositide-Dependent Protein Kinases , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/immunology , Immunity/genetics , Immunity/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Pyrimidines , Tumor Microenvironment , Uridine Kinase/genetics , Uridine Kinase/immunology
9.
Front Immunol ; 13: 936967, 2022.
Article in English | MEDLINE | ID: mdl-35967360

ABSTRACT

Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate, and is responsible for the production of ATP during glycolysis. As another important isozyme of PK, pyruvate kinase M2 (PKM2) exists in cells with high levels of nucleic acid synthesis, such as normal proliferating cells (e.g., lymphocytes and intestinal epithelial cells), embryonic cells, adult stem cells, and tumor cells. With further research, PKM2, as an important regulator of cellular pathophysiological activity, has attracted increasing attention in the process of autoimmune response and inflammatory. In this re]view, we examine the contribution of PKM2 to the human immune response. Further studies on the immune mechanisms of PKM2 are expected to provide more new ideas and drug targets for immunotherapy of inflammatory and autoimmune diseases, guiding drug development and disease treatment.


Subject(s)
Carrier Proteins , Glycolysis , Immunity , Membrane Proteins , Pyruvate Kinase , Thyroid Hormones , Autoimmunity/genetics , Autoimmunity/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Glycolysis/genetics , Glycolysis/immunology , Humans , Immunity/genetics , Immunity/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Pyruvate Kinase/genetics , Pyruvate Kinase/immunology , Pyruvic Acid/immunology , Thyroid Hormones/genetics , Thyroid Hormones/immunology , Thyroid Hormone-Binding Proteins
10.
Front Immunol ; 13: 891220, 2022.
Article in English | MEDLINE | ID: mdl-35967383

ABSTRACT

Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1's role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.


Subject(s)
Disease , Lectins , Macrophages , beta-N-Acetylhexosaminidases , Animals , Chitinases/genetics , Chitinases/immunology , Disease/genetics , Immunity/genetics , Immunity/immunology , Lectins/genetics , Lectins/immunology , Macrophages/immunology , Mammals/genetics , Mammals/immunology , Mice , Neutrophils/immunology , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/immunology
11.
Eur J Immunol ; 52(9): 1386-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-35934899

ABSTRACT

Traditionally, immune-mediated pathology is considered to result from hyperactivity of the immune system. In recent years, however, it has become apparent that, paradoxically, immunopathology can also occur as a consequence of impaired, immune reactions. This insight has important consequences. In the case of hyperactivity, immune suppression is the method of choice for therapy. By contrast, patients suffering from immunopathology as a consequence of impaired immune reactions may benefit instead from immune stimulation or immune reconstitution. This concept is what we call the "IMPATH paradox." The scientific and clinical impact of the IMPATH paradox is the focus of the collaborative research center CRC1160, funded by the German Research Foundation (DFG) since 2015. The CRC examines human and murine model situations, in which the causal link between impaired immune reactions and immunopathology can be explored and better mechanistically defined. In this series of review articles, we wish to place some of these models into the context of the IMPATH paradox and illustrate their potential to stimulate novel perspectives on immunopathology and its therapy.


Subject(s)
Immunity/immunology , Animals , Humans , Mice
12.
Proc Natl Acad Sci U S A ; 119(34): e2203505119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969768

ABSTRACT

Antibodies and T cell receptors (TCRs) are the fundamental building blocks of adaptive immunity. Repertoire-scale functionality derives from their epitope-binding properties, just as macroscopic properties like temperature derive from microscopic molecular properties. However, most approaches to repertoire-scale measurement, including sequence diversity and entropy, are not based on antibody or TCR function in this way. Thus, they potentially overlook key features of immunological function. Here we present a framework that describes repertoires in terms of the epitope-binding properties of their constituent antibodies and TCRs, based on analysis of thousands of antibody-antigen and TCR-peptide-major-histocompatibility-complex binding interactions and over 400 high-throughput repertoires. We show that repertoires consist of loose overlapping classes of antibodies and TCRs with similar binding properties. We demonstrate the potential of this framework to distinguish specific responses vs. bystander activation in influenza vaccinees, stratify cytomegalovirus (CMV)-infected cohorts, and identify potential immunological "super-agers." Classes add a valuable dimension to the assessment of immune function.


Subject(s)
Adaptive Immunity , Epitopes , Receptors, Antigen, T-Cell , Epitopes/metabolism , Humans , Immunity/immunology , Peptides/metabolism
13.
J Interferon Cytokine Res ; 42(7): 316-328, 2022 07.
Article in English | MEDLINE | ID: mdl-35834651

ABSTRACT

Cytokines are powerful mediators of immune responses and some, such as interleukin-2 (IL-2), have achieved dramatic responses as cancer immunotherapies. Unfortunately, systemic administration often results in deleterious side effects, prompting exploration of strategies to localize cytokine activity to the tumor microenvironment (TME). To this end, we constructed an IL-2/IL2Ra fusion protein (IL-2FP) with an MMP2/9-specific cleavage site, designed to exploit the dysregulated protease activity in the TME to selectively activate IL-2 in the tumor. To determine if TME protease activity is sufficient to cleave the FP and if FP activity is due to specific cleavage, we created Colon 38 tumor cell lines expressing similar levels of IL-2FPs with either a functional cleavage site [H11(cs-1FP)] or a scrambled, noncleavable sequence [H2(scramFP)]. H11(cs-1FP) tumors demonstrated reduced tumor growth, characterized by regressions not observed in H2(scramFP) tumors. Analysis through qRT-PCR, flow cytometry, and immunohistochemistry indicate robust CD8 responses in the H11(cs-1FP) tumors. Interferon gamma (IFNg) knockout mice revealed that the immune effects of the cleavable FP are mediated through both IFNg-dependent and IFNg-independent mechanisms. Collectively, these data suggest that matrix metalloproteinases (MMPs) in the TME can cleave the IL-2FP specifically, thus enhancing an antitumor response, and provide a rationale for further developing this approach.


Subject(s)
Cell Line, Tumor , Immunity , Interferon-gamma , Interleukin-2 , Recombinant Fusion Proteins , Tumor Microenvironment , Animals , Cell Line, Tumor/immunology , Immunity/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Interleukin-2/pharmacology , Mice , Peptide Hydrolases/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , Tumor Microenvironment/immunology
14.
Front Immunol ; 13: 851620, 2022.
Article in English | MEDLINE | ID: mdl-35251049

ABSTRACT

Myocarditis and myopericarditis may occur after COVID-19 vaccination with an incidence of two to twenty cases per 100,000 individuals, but underlying mechanisms related to disease onset and progression remain unclear. Here, we report a case of myopericarditis following the first dose of the mRNA-1273 COVID-19 vaccine in a young man who had a history of mild COVID-19 three months before vaccination. The patient presented with chest pain, elevated troponin I level, and electrocardiogram abnormality. His endomyocardial biopsy revealed diffuse CD68+ cell infiltration. We characterized the immune profile of the patient using multiplex cytokine assay and flow cytometry analysis. Sex-matched vaccinated individuals and healthy individuals were used as controls. IL-18 and IL-27, Th1-type cytokines, were highly increased in the patient with COVID-19 vaccine-related myopericarditis compared with vaccinated controls who experienced no cardiac complications. In the patient, circulating NK cells and T cells showed an activated phenotype and mRNA profile, and monocytes expressed increased levels of IL-18 and its upstream NLRP3 inflammasome. We found that recombinant IL-18 administration into mice caused mild cardiac dysfunction and activation of NK cells and T cells in the hearts, similar to the findings in the patient with myopericarditis after COVID-19 mRNA vaccination. Collectively, myopericarditis following COVID-19 mRNA vaccination may be associated with increased IL-18-mediated immune responses and cardiotoxicity.


Subject(s)
2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , COVID-19/immunology , Immunity/immunology , Interleukin-18/immunology , Myocarditis/chemically induced , Vaccination/adverse effects , Adult , Animals , Humans , Killer Cells, Natural/immunology , Male , Mice , SARS-CoV-2/immunology , Young Adult
15.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: mdl-35159296

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
16.
J Immunother Cancer ; 10(2)2022 02.
Article in English | MEDLINE | ID: mdl-35193933

ABSTRACT

BACKGROUND: The combination of ISA101, a human papilloma virus (HPV) 16 peptide vaccine, and nivolumab showed a promising response rate of 33% in patients with incurable HPV-16+ cancer. Here we report long-term clinical outcomes and immune correlates of response. METHODS: Patients with advanced HPV-16+ cancer and less than two prior regimens for recurrence were enrolled to receive ISA101 (100 µg/peptide) on days 1, 22, and 50 and nivolumab 3 mg/kg every 2 weeks beginning day 8 for up to 1 year. Baseline tumor samples were stained with multiplex immunofluorescence for programmed death-ligand 1 (PD-L1), programmed cell death protein-1 (PD-1), CD3, CD8, CD68, and pan-cytokeratin in a single panel and scanned with the Vectra 3.0 multispectral microscope. Whole transcriptome analysis of baseline tumors was performed with Affymetrix Clariom D arrays. Differential gene expression analysis was performed on responders versus non-responders. RESULTS: Twenty-four patients were followed for a median of 46.5 months (95% CI, 46.0 months to not reached (NR)). The median duration of response was 11.2 months (95% CI, 8.51 months to NR); three out of eight (38%) patients with objective response were without progression at 3 years. The median and 3-year overall survival were 15.3 months (95% CI, 10.6 months to 27.2 months) and 12.5% (95% CI, 4.3% to 36%), respectively. The scores for activated T cells ((CD3+PD-1+)+(CD3+CD8+PD-1+)), activated cytotoxic T cells (CD3+CD8+PD-1+), and total macrophage ((CD68+PD-L1-)+(CD68+PD-L1+)) in tumor were directly correlated with clinical response (p<0.05) and depth of response with the two complete response patients having the highest degree of CD8+ T cells. Gene expression analysis revealed differential regulation of 357 genes (≥1.25 fold) in non-responders versus responders (p<0.05). Higher expression of immune response, inflammatory response and interferon-signaling pathway genes were correlated with clinical response (p<0.05). CONCLUSIONS: Efficacy of ISA101 and nivolumab remains promising in long-term follow-up. Increased infiltration by PD-1+ T cells and macrophages was predictive of response. Enrichment in gene sets associated with interferon-γ response and immune infiltration strongly predicted response to therapy. A randomized trial is ongoing to test this strategy and to further explore correlates of immune response with combined nivolumab and ISA101, versus nivolumab alone. TRIAL REGISTRATION NUMBER: NCT02426892.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Human papillomavirus 16/drug effects , Human papillomavirus 16/immunology , Immunity/immunology , Nivolumab/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Female , Humans , Male , Nivolumab/pharmacology
17.
PLoS One ; 17(2): e0263468, 2022.
Article in English | MEDLINE | ID: mdl-35108321

ABSTRACT

BACKGROUND: Mass vaccination is the key element in controlling current COVID-19 pandemic. Studies comparing immunogenicity of different COVID-19 vaccines are largely lacking. We aimed at measuring anti-S antibody (Ab) levels in individuals fully vaccinated with BNT162b2, BBIBP-CorV and Gam-COVID-Vac, as well as in COVID-19 convalescents. METHODS: In this cross-sectional study, serum was collected from 400 age- and sex-matched participants, 100 fully vaccinated with BNT162b2, 100 with BBIBP-CorV and 100 with Gam-COVID-Vac on the 28th day after the second vaccine dose, and 100 recovered from COVID-19 at least 28 days after symptom(s) resolution. Sera were analyzed using the LIAISON SARS-CoV-2 S1/S2 IgG assay (DiaSorin, Saluggia, Italy). Wilcoxon rank-sum or Kruskal-Wallis tests was used for comparison of Ab levels. RESULTS: Highest mean value (210.11, SD = 100.42) was measured in the BNT162b2 group, followed by Gam-COVID-Vac (171.11, SD = 120.69) and BBIBP-CorV (68.50, SD = 72.78) AU/mL (p<0.001). Significant differences in antibody levels were found between BNT162b2 and BBIBP-CorV (p<0.001), BNT162b2 and Gam-COVID-Vac (p = 0.001), as well as BBIBP-CorV and Gam-COVID-Vac groups (p<0.001). Percentage of seropositive was 81% in the convalescent group, 83% in BBIBP-CorV vaccinated and 100% in BNT162b2 and Gam-COVID-Vac. When comparing measured antibody levels in vaccinated to those in COVID-19 recovered, significantly higher antibody levels were found for vaccinated with BNT162b2 (p<0.001), and with Gam-COVID-Vac (p<0.001), while for BBIBP-CorV there was no statistically significant difference (p = 0.641). CONCLUSIONS: All three investigated vaccines, BNT162b2, BBIBP-CorV and Gam-COVID-Vac, provide robust immune response 28 days after the second dose of vaccine, in the majority of participants. All individuals vaccinated with BNT162b2 and Gam-COVID-Vac seroconverted, while in vaccinated with BBIBP-CorV and COVID-19 recovered seroconversion rates were lower. Although less potent compared to other two vaccines, immune response after BBIBP-CorV was similar to response measured in convalescents. Challenge still remains to examine dynamics and durability of immunoprotection.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/immunology , COVID-19/therapy , Treatment Outcome , Adult , Antibodies/analysis , Antibodies/blood , Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/blood , COVID-19 Vaccines/immunology , Convalescence , Cross-Sectional Studies , Female , Humans , Immunity/immunology , Immunity, Innate/immunology , Immunogenicity, Vaccine/immunology , Immunoglobulin G/analysis , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/immunology , Serbia , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology
18.
J Exp Clin Cancer Res ; 41(1): 62, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35164813

ABSTRACT

Immunotherapy has emerged as a promising strategy for boosting antitumoral immunity. Blockade of immune checkpoints (ICs), which regulate the activity of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells has proven clinical benefits. Antibodies targeting CTLA-4, PD-1, and PD-L1 are IC-blockade drugs approved for the treatment of various solid and hematological malignancies. However, a large subset of patients does not respond to current anti-IC immunotherapy. An integrative understanding of tumor-immune infiltrate, and IC expression and function in immune cell populations is fundamental to the design of effective therapies. The simultaneous blockade of newly identified ICs, as well as of previously described ICs, could improve antitumor response. We review the potential for novel combinatory blockade strategies as antitumoral therapy, and their effects on immune cells expressing the targeted ICs. Preclinical evidence and clinical trials involving the blockade of the various ICs are reported. We finally discuss the rationale of IC co-blockade strategy with respect to its downstream signaling in order to improve effective antitumoral immunity and prevent an increased risk of immune-related adverse events (irAEs).


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunity/immunology , Killer Cells, Natural/immunology , Neoplasms/drug therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods
19.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163255

ABSTRACT

Progesterone is well known for its numerous endocrinologic roles in pregnancy but is also endowed with fascinating immunomodulatory capabilities. It can downregulate the induction of inflammatory reactions, the activation of immune cells and the production of cytokines, which are critical mediators of immune responses. These features appear to be critical to the success of pregnancy, given the ability of maternal immune reactivity to interfere with pregnancy and to contribute to several pregnancy complications. This review summarizes the contribution of maternal immune effectors in general, and cytokines in particular, to pregnancy complications such as recurrent miscarriage, pre-eclampsia and preterm labor; it describes the promise offered by supplementation with progesterone and the oral progestogen dydrogesterone, as well as the progesterone-induced blocking factor in the prevention and/or treatment of these serious complications.


Subject(s)
Hormones/immunology , Immunomodulation/immunology , Progesterone/immunology , Animals , Cytokines/immunology , Dydrogesterone/immunology , Female , Humans , Immunity/immunology , Pregnancy
20.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216128

ABSTRACT

The plant mitogen-activated protein kinase (MAPK) cascade plays an important role in mediating responses to biotic and abiotic stresses and is the main pathway through which extracellular stimuli are transduced intracellularly as signals. Our previous research showed that the GhMKK6-GhMPK4 cascade signaling pathway plays an important role in cotton immunity. To further analyze the role and regulatory mechanism of the GhMKK6-GhMPK4 cascade signaling pathway in cotton resistance to Fusarium wilt, we functionally analyzed GhMPK4. Our results show that silencing GhMPK4 reduces cotton tolerance to Fusarium wilt and reduces the expression of several resistance genes. Further experiments revealed that GhMPK4 is similar to GhMKK6, both of whose overexpression cause unfavorable cotton immune response characteristics. By using a yeast two-hybrid screening library and performing a bioinformatics analysis, we screened and identified a negative regulator of the MAPK kinase-protein phosphatase AP2C1. Through the functional analysis of AP2C1, it was found that, after being silenced, GhAP2C1 increased resistance to Fusarium wilt, but GhAP2C1 overexpression caused sensitivity to Fusarium wilt. These findings show that GhAP2C1 interacts together with GhMPK4 to regulate the immune response of cotton to Fusarium oxysporum, which provides important data for functionally analyzing and studying the feedback regulatory mechanism of the MAPK cascade and helps to clarify the regulatory mechanism through which the MAPK cascade acts in response to pathogens.


Subject(s)
Fusarium/immunology , Gossypium/immunology , Gossypium/metabolism , Immunity/immunology , Phosphoprotein Phosphatases/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Disease Resistance/immunology , MAP Kinase Signaling System/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...