Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 752
Filter
1.
Food Funct ; 11(7): 6552-6564, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32643709

ABSTRACT

Intestinal secretory immunoglobulin A (sIgA)-improving function of Lactobacillus casei-fermented blueberry pomace (FBP) was investigated in this study. Male C57BL/6 mice were fed with control diet (CD) or high-fat diet (HFD) with or without FBP supplementation. Expressions of sIgA-associated genes/proteins were evaluated by quantitative polymerase chain reaction (qPCR), western blot and enzyme-linked immunosorbent assay (ELISA). Commensal microbiota in Peyer's patches (PPs) and caecal contents were analyzed by 16S rRNA Illumina sequencing and qPCR, respectively. FBP improved sIgA production in HFD mice at mRNA and protein levels. Akkermansia and Lactobacillus in PPs of HFD mice were statistically increased by FBP. Beneficial microbiota and short-chain fatty acids (SCFAs) in caecal contents were positively correlated with caecal immunoglobulins in HFD mice. FBP showed an ability to modulate intestinal microbiota, which improved sIgA production in HFD mice, warranting the potential use of berry by-products as functional ingredients in improving the intestinal immune barrier of HFD individuals.


Subject(s)
Blueberry Plants , Diet, High-Fat , Fruit/metabolism , Gastrointestinal Microbiome/physiology , Immunoglobulin A, Secretory/biosynthesis , Lacticaseibacillus casei/metabolism , Animals , Cecum/chemistry , Cecum/microbiology , Diet , Fatty Acids, Volatile/analysis , Fermentation , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Peyer's Patches/microbiology
2.
Front Immunol ; 11: 1069, 2020.
Article in English | MEDLINE | ID: mdl-32655550

ABSTRACT

Acinetobacter baumannii (A. baumannii) is becoming a common global concern due to the emergence of multi-drug or pan-drug resistant strains. Confronting the issue of antimicrobial resistance by developing vaccines against the resistant pathogen is becoming a common strategy. In this study, different methods for preparing A. baumannii outer membrane vesicles (AbOMVs) vaccines were developed. sOMV (spontaneously released AbOMV) was extracted from the culture supernatant, while SuOMV (sucrose-extracted AbOMV) and nOMV (native AbOMV) were prepared from the bacterial cells. Three AbOMVs exhibited significant differences in yield, particle size, protein composition, and LPS/DNA content. To compare the protective efficacy of the three AbOMVs, groups of mice were immunized either intramuscularly or intranasally with each AbOMV. Vaccination via both routes conferred significant protection against lethal and sub-lethal A. baumannii challenge. Moreover, intranasal vaccination provided more robust protection, which may be attributed to the induction of significant sIgA response in mucosal sites. Among the three AbOMVs, SuOMV elicited the highest level of protective immunity against A. baumannii infection, whether intramuscular or intranasal immunization, which was characterized by the expression of the most profound specific serum IgG or mucosal sIgA. Taken together, the preparation method had a significant effect on the yield, morphology, and composition of AbOMVs, that further influenced the protective effect against A. baumannii infection.


Subject(s)
Acinetobacter baumannii/immunology , Bacterial Vaccines/isolation & purification , Acinetobacter Infections/immunology , Acinetobacter Infections/microbiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/ultrastructure , Administration, Intranasal , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/blood , Antibody Specificity , Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/ultrastructure , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Female , Humans , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin G/blood , Immunoglobulin G/classification , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission
3.
Exp Parasitol ; 215: 107901, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32525007

ABSTRACT

Eimeria tenella (E. tenella) has caused severe economic loss in chicken production, especially after the forbidden use of antibiotics in feed. Considering the drug resistant problem caused by misuse of chemoprophylaxis and live oocyst vaccines can affect the productivity of chickens, also it has the risk to reversion of virulence, the development of efficacious, convenient and safe vaccines is still deeply needed. In this study, the EtMic2 protein of E. tenella was anchored on the surface of Lactobacillus plantarum (L. plantarum) NC8 strain. The newly constructed strain was then used to immunize chickens, followed by E. tenella challenge. The results demonstrated that the recombinant strain could provide efficient protection against E. tenella, shown by increased relative body weight gains, percentages of CD4+ and CD8+ T cells, humoral immune response and inflammatory cytokines. In addition, decreased cecum lesion scores and fecal oocyst shedding were also observed during the experiment. In conclusion, this study proves the possibility to use L. plantarum as a vessel to deliver protective antigen to protect chickens against coccidiosis.


Subject(s)
12E7 Antigen/immunology , Chickens/parasitology , Coccidiosis/veterinary , Eimeria tenella/immunology , Poultry Diseases/prevention & control , Protozoan Vaccines , Animals , Antigens, Protozoan/immunology , Cecum/parasitology , Coccidiosis/economics , Coccidiosis/parasitology , Coccidiosis/prevention & control , Eimeria tenella/chemistry , Flow Cytometry/veterinary , Fluorescent Antibody Technique, Indirect/veterinary , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin G/blood , Interferon-gamma/blood , Interleukin-2/blood , Intestines/immunology , Lactobacillus plantarum/genetics , Lactobacillus plantarum/immunology , Poultry Diseases/economics , Poultry Diseases/parasitology , Random Allocation , Vaccines, Synthetic
4.
Mucosal Immunol ; 13(1): 3-11, 2020 01.
Article in English | MEDLINE | ID: mdl-31413347

ABSTRACT

The human intestine is densely colonized with commensal microbes that stimulate the immune system. While secretory Immunoglobulin (Ig) A is known to play a crucial role in gut microbiota compartmentalization, secretory IgM, and systemic IgG have recently been highlighted in host-microbiota interactions as well. In this review, we discuss important aspects of secretory IgA biology, but rather than focusing on mechanistic aspects of IgA impact on microbiota, we stress the current knowledge of systemic antibody responses to whole gut microbiota, in particular their generation, specificities, and function. We also provide a comprehensive picture of secretory IgM biology. Finally, therapeutic and diagnostic implications of these novel findings for the treatment of various diseases are outlined.


Subject(s)
Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Immunoglobulin A, Secretory/immunology , Immunoglobulin A/metabolism , Intestinal Mucosa/innervation , Animals , Homeostasis , Humans , Immunity, Mucosal , Immunoglobulin A/immunology , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin A, Secretory/metabolism , Symbiosis
5.
Planta ; 250(4): 1255-1264, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31222495

ABSTRACT

MAIN CONCLUSION: An edible plant was tested as a host for the production of secretory monoclonal IgA against Shiga toxin 1 (Stx1). The lettuce-derived IgA completely protected Vero cells from Stx1. Secretory immunoglobulin A (SIgA) is thought to control mucosal infections and thus it may be applicable to oral passive immunotherapy. Edible plants are candidate hosts for producing oral formulations with SIgA against pathogenic agents. We previously established a recombinant IgA specific for the B subunit of Shiga toxin 1 (Stx1B) consisting of the Fab fragment of Stx1B-specific monoclonal IgG and the Fc region of IgA (hyIgA). Here, we developed transgenic lettuce (Lactuca sativa) that produces hyIgA in a secretory form (S-hyIgA). An Arabidopsis-derived light-harvesting complex II (LHCB) promoter was used for the expression of all four transgenes (hyIgA heavy, light and j chains, and secretory component). Agrobacterium-mediated transformation was carried out to introduce genes into lettuce leaf discs by means of a single vector harboring all four transgenes. Consistent with the tissue specificity of the LHCB promoter, the expression of hyIgA transgenes was observed in leaf and stem tissues, which contain chloroplasts, at the mRNA and protein levels. The leaves produced hyIgA in a more than tenfold higher yield as compared with stems. The lettuce-derived S-hyIgA was found to bind to Stx1B in a dose-dependent manner by means of ELISA. A leaf extract of the transgenic lettuce completely neutralized the cytotoxicity of Stx1 against Vero cells, which are highly susceptible to Stx1. In conclusion, we established a transgenic lettuce producing a secretory form of hyIgA that can bind bacterial toxin. The results indicate that edible practical plants containing S-hyIgA will provide a possible means for immunotherapy for food poisoning.


Subject(s)
Antibodies, Monoclonal/immunology , Foodborne Diseases/therapy , Immunoglobulin A, Secretory/immunology , Lactuca/genetics , Shiga Toxin 1/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Chlorocebus aethiops , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin A, Secretory/genetics , Immunotherapy , Lactuca/immunology , Recombinant Proteins , Shiga Toxin 1/genetics , Vero Cells
6.
FASEB J ; 33(6): 7615-7624, 2019 06.
Article in English | MEDLINE | ID: mdl-30908942

ABSTRACT

Hirschsprung disease (HSCR) is a common cause of intestinal obstruction in the newborn. Hirschsprung-associated enterocolitis (HAEC) is a significant and life-threatening complication of HSCR, affecting up to 60% of patients. Animal models of endothelin receptor B (EdnrB) mutation reliably model human HSCR and HAEC. We previously demonstrated intestinal dysbiosis and a gut-specific deficiency of B-lymphocyte-produced secretory IgA (sIgA), the primary effector molecule of mucosal immunity, in mice with homozygous neural crest cell-conditional deletion of EdnrB (EdnrBNCC-/-). To determine mechanisms for sIgA deficiency, we examined intrinsic and extrinsic aspects of B-lymphocyte development and function. Expression of the endothelin axis components [endothelin-1 (ET-1), endothelin-3 (ET-3), endothelin receptor A (EdnrA), EdnrB] were determined over a developmental time course. B-lymphocyte survival and Ig production were assayed in vitro. Polymeric Ig receptor (pIgR)-mediated IgA transport into the intestinal lumen was interrogated. We found endothelin axis component (EdnrA, EdnrB, ET-1, ET-3) expression in developing extramedullary hematopoietic organs and that some splenic B lymphocytes express EdnrB. Splenic B lymphocytes from EdnrBNCC-/- mice showed no intrinsic defect in survival vs. wild-type (WT) B lymphocytes. In vitro stimulation of splenic B lymphocytes demonstrated decreased IgA, IgG, and IgM production in EdnrBNCC-/-vs. WT mice. Additionally, small intestinal pIgR was decreased ∼50% in EdnrBNCC-/- mice. These results suggest an intrinsic B-lymphocyte defect in antibody production as well as an extrinsic defect in IgA transport in the EdnrBNCC-/- model of HAEC. Our results are consistent with human HAEC observations of decreased luminal sIgA and mouse models of other inflammatory bowel diseases, in which decreased pIgR is seen in concert with a dysregulated microbiota. Finally, our results suggest targeting the dysbiotic microbiome and pIgR-mediated sIgA transport as potential therapeutic approaches in prevention and treatment of HAEC.-Medrano, G., Cailleux, F., Guan, P., Kuruvilla, K., Barlow-Anacker, A. J., Gosain, A. B-lymphocyte-intrinsic and -extrinsic defects in secretory immunoglobulinA production in the neural crest-conditional deletion of endothelin receptor B model of Hirschsprung-associated enterocolitis.


Subject(s)
B-Lymphocytes/metabolism , Enterocolitis/metabolism , Hirschsprung Disease/metabolism , Immunoglobulin A, Secretory/biosynthesis , Neural Crest/metabolism , Receptor, Endothelin B/genetics , Sequence Deletion , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Receptor, Endothelin B/metabolism , Spleen/metabolism
7.
Plant Biotechnol J ; 17(9): 1760-1769, 2019 09.
Article in English | MEDLINE | ID: mdl-30801876

ABSTRACT

Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. These T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, if time permits, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA.


Subject(s)
Arabidopsis/genetics , DNA, Bacterial/genetics , Immunoglobulin A, Secretory/biosynthesis , Transformation, Genetic , Animals , Arabidopsis/metabolism , Gene Silencing , Genetic Vectors , Plants, Genetically Modified , Seeds/genetics , Swine
8.
Int J Mol Sci ; 20(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577574

ABSTRACT

l-Tryptophan (Trp) is known to play an important role in the health of the large intestine. However, a role of dietary Trp in the small-intestinal mucosal barrier and microbiota remains poorly understood. The present study was conducted with weaned piglets to address this issue. Postweaning piglets were fed for 4 weeks a corn- and soybean meal-based diet supplemented with 0 (Control), 0.1, 0.2, or 0.4% Trp. The small-intestinal microbiota and serum amino acids were analyzed by bacterial 16S rRNA gene-based high-throughput sequencing methods and high-performance liquid chromatography, respectively. The mRNA levels for genes involved in host defense and the abundances of tight-junction proteins in jejunum and duodenum were measured by real time-PCR and Western blot techniques, respectively. The concentrations of Trp in the serum of Trp-supplemented piglets increased in a dose-dependent manner. Compared with the control group, dietary supplementation with 0.2⁻0.4% Trp reduced the abundances of Clostridium sensu stricto and Streptococcus in the jejunum, increased the abundances of Lactobacillus and Clostridium XI (two species of bacteria that can metabolize Trp) in the jejunum, and augmented the concentrations of secretory immunoglobulin A (sIgA) as well as mRNA levels for porcine ß-defensins 2 and 3 in jejunal tissues. Moreover, dietary Trp supplementation activated the mammalian target of rapamycin signaling and increased the abundances of tight-junction proteins (zonula occludens (ZO)-1, ZO-3, and claudin-1) in jejunum and duodenum. We suggested that Trp-metabolizing bacteria in the small intestine of weaned pigs primarily mediated the beneficial effects of dietary Trp on its mucosal integrity, health, and function.


Subject(s)
Dietary Supplements , Intestinal Mucosa/metabolism , Tryptophan/metabolism , Amino Acids/blood , Animals , Animals, Newborn , Biodiversity , Gastrointestinal Microbiome , Gene Expression , Immunoglobulin A, Secretory/biosynthesis , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Permeability , Signal Transduction , Swine , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Tryptophan/pharmacology , Weaning , beta-Defensins/genetics , beta-Defensins/metabolism
9.
J Immunol ; 201(4): 1287-1294, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29987162

ABSTRACT

Secretory IgA is a key host defense mechanism that controls the intestinal microbiota. We investigated the role of CD11c+CX3CR1+CD64+ macrophages in IgA production in the intestine. Intestinal CX3CR1+ macrophages directly induced IgA secretion by B cells. Ag delivery to lamina propria (LP) CX3CR1+ macrophages specifically induced intestinal IgA production. The induction of IgA by CX3CR1+ macrophages required BAFF, a proliferation-inducing ligand, and TNF-α, but was surprisingly independent of TLR-mediated microbial recognition and retinoic acid signaling. IgA secretion by CX3CR1+ macrophages was enhanced by LP CD8+ T cells through the secretion of IL-9 and IL-13. CX3CR1+ macrophages and CD8+ T cells induced IgA production by B cells independently of mesenteric lymph nodes and Peyer patches. Our data reveal a previously unrecognized cellular circuitry in which LP CX3CR1+ macrophages, B cells, and CD8+ T cells coordinate the protective Ig secretion in the small intestine upon peripheral Ag delivery.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunoglobulin A, Secretory/biosynthesis , Intestinal Mucosa/immunology , Macrophages/immunology , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , CX3C Chemokine Receptor 1/immunology , Immunity, Mucosal/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Sci Rep ; 8(1): 5065, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29567956

ABSTRACT

IgA secretion at mucosal sites is important for host defence against pathogens as well as maintaining the symbiosis with microorganisms present in the small intestine that affect IgA production. In the present study, we tested the ability of 5 strains of lactic acid bacteria stimulating IgA production, being Pediococcus acidilactici K15 selected as the most effective on inducing this protective immunoglobulin. We found that this response was mainly induced via IL-10, as efficiently as IL-6, secreted by K15-stimulated dendritic cells. Furthermore, bacterial RNA was largely responsible for the induction of these cytokines; double-stranded RNA was a major causative molecule for IL-6 production whereas single-stranded RNA was critical factor for IL-10 production. In a randomized, double-blind, placebo-controlled clinical trial, ingestion of K15 significantly increased the secretory IgA (sIgA) concentration in saliva compared with the basal level observed before this intervention. These results indicate that functional lactic acid bacteria induce IL-6 and IL-10 production by dendritic cells, which contribute to upregulating the sIgA concentration at mucosal sites in humans.


Subject(s)
Immunoglobulin A, Secretory/biosynthesis , Interleukin-10/biosynthesis , Interleukin-6/biosynthesis , Intestine, Small/metabolism , Pediococcus acidilactici/metabolism , Adult , Animals , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Female , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Humans , Immunoglobulin A, Secretory/metabolism , Interleukin-10/genetics , Interleukin-6/genetics , Intestine, Small/microbiology , Lactobacillales/immunology , Lactobacillales/metabolism , Male , Middle Aged , Pediococcus acidilactici/immunology , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Saliva/metabolism , Saliva/microbiology
11.
BMC Res Notes ; 11(1): 98, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29402300

ABSTRACT

OBJECTIVE: To assess the variability of secretory immunoglobulin A (S-IgA) in the lumen and feces of mice along a working day. RESULTS: Mice were maintained under a 12 h light-dark cycle, light period starting at 8 AM. S-IgA was determined in feces and intestinal content (after one or three washes) at three points along the day: at the beginning, in the middle and at the end of the light period (ELP). Significant reduction in the content of S-IgA in the small intestine fluid and in feces was observed at the end of the light cycle, which coincides with the end of a regular working day (8 PM) in any given animal facility. It was also observed that three washes of the small intestine were more effective than one flush to recover a significant higher amount of S-IgA, with the smallest coefficient of variation observed by the ELP. A smaller CV would imply a reduced number of animals needed to achieve the same meaningful results. The results may be useful when designing animal trials for the selection of probiotic candidates based on their capacity of activating S-IgA, since it would imply a more rational use of experimental animals.


Subject(s)
Circadian Rhythm/immunology , Immunoglobulin A, Secretory/biosynthesis , Intestinal Mucosa/immunology , Intestine, Small/immunology , Analysis of Variance , Animals , Feces/chemistry , Male , Mice , Mice, Inbred BALB C , Photoperiod
12.
Benef Microbes ; 9(1): 153-164, 2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29124968

ABSTRACT

The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.


Subject(s)
Cell Wall/chemistry , Immunologic Factors/pharmacology , Intestinal Mucosa/immunology , Lactobacillus/ultrastructure , Macrophages/immunology , Probiotics/pharmacology , Animals , Cytokines/metabolism , Immunity, Innate/drug effects , Immunity, Mucosal/drug effects , Immunoglobulin A, Secretory/biosynthesis , Immunologic Factors/administration & dosage , Intestinal Mucosa/microbiology , Intestines/cytology , Intestines/drug effects , Intestines/physiology , Intestines/ultrastructure , Lactobacillus/chemistry , Mice , Mice, Inbred BALB C , Probiotics/administration & dosage
13.
Sci Rep ; 7(1): 16488, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184147

ABSTRACT

The prostate secretes immunoglobulin (Ig) A (IgA) and IgG; however, how immunoglobulins reach the secretion, where the plasma cells are located, whether immunoglobulins are antigen-specific and where activation of the adaptive response occurs are still unknown. Immune cells, including CD45RA+ cells, were scattered in the stroma and not organized mucosae-associated lymphoid-tissue. IgA (but not IgG) immunostaining identified stromal plasma cells and epithelial cells in non-immunized rats. Injected tetramethylrhodamine-IgA transcytosed the epithelium along with polymeric immunoglobulin receptor. Oral immunization with ovalbumin/mesopourous SBA-15 silica adjuvant resulted in more stromal CD45RA+/IgA+ cells, increased content of ovalbumin-specific IgA and IgG, and the appearance of intraepithelial CD45RA+/IgG+ cells. An increased number of dendritic cells that cooperate in other sites with transient immunocompetent lymphocytes, and the higher levels of interleukin-1ß, interferon-γ and transforming growth factor-ß, explain the levels of specific antibodies. Nasal immunization produced similar results except for the increase in dendritic cells. This immunomodulatory strategy seems useful to boost immunity against genitourinary infections and, perhaps, cancer.


Subject(s)
Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin A, Secretory/immunology , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Prostate/immunology , Adjuvants, Immunologic , Animals , Biomarkers , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Epithelium/immunology , Epithelium/metabolism , Immunization , Immunohistochemistry , Immunophenotyping , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Male , Plasma Cells/immunology , Plasma Cells/metabolism , Prostate/metabolism , Rats , Silicon Dioxide/administration & dosage , Silicon Dioxide/immunology
14.
Sci Rep ; 7(1): 8802, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821839

ABSTRACT

The salivary gland is rhythmically controlled by sympathetic nerve activation from the suprachiasmatic nucleus (SCN), which functions as the main oscillator of circadian rhythms. In humans, salivary IgA concentrations reflect circadian rhythmicity, which peak during sleep. However, the mechanisms controlling this rhythmicity are not well understood. Therefore, we examined whether the timing of parasympathetic (pilocarpine) or sympathetic (norepinephrine; NE) activation affects IgA secretion in the saliva. The concentrations of saliva IgA modulated by pilocarpine activation or by a combination of pilocarpine and NE activation were the highest in the middle of the light period, independent of saliva flow rate. The circadian rhythm of IgA secretion was weakened by an SCN lesion and Clock gene mutation, suggesting the importance of the SCN and Clock gene on this rhythm. Adrenoceptor antagonists blocked both NE- and pilocarpine-induced basal secretion of IgA. Dimeric IgA binds to the polymeric immunoglobulin receptor (pIgR) on the basolateral surface of epithelial cells and forms the IgA-pIgR complex. The circadian rhythm of Pigr abundance peaked during the light period, suggesting pIgR expression upon rhythmic secretion of IgA. We speculate that activation of sympathetic nerves during sleep may protect from bacterial access to the epithelial surface through enhanced secretion of IgA.


Subject(s)
Circadian Clocks , Immunoglobulin A, Secretory/biosynthesis , Receptors, Cell Surface/metabolism , Saliva/immunology , Adrenal Glands/metabolism , Adrenal Glands/pathology , Adrenergic Fibers/drug effects , Adrenergic Fibers/immunology , Adrenergic Fibers/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Rhythm , Immunoglobulin A, Secretory/immunology , Male , Mice , Mice, Knockout , Salivary Glands/immunology , Salivary Glands/metabolism , Suprachiasmatic Nucleus/physiology
15.
J Immunol ; 199(1): 9-16, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28630108

ABSTRACT

Mucosal IgA or secretory IgA (SIgA) are structurally equipped to resist chemical degradation in the harsh environment of mucosal surfaces and enzymes of host or microbial origin. Production of SIgA is finely regulated, and distinct T-independent and T-dependent mechanisms orchestrate Ig α class switching and SIgA responses against commensal and pathogenic microbes. Most infectious pathogens enter the host via mucosal surfaces. To provide a first line of protection at these entry ports, vaccines are being developed to induce pathogen-specific SIgA in addition to systemic immunity achieved by injected vaccines. Mucosal or epicutaneous delivery of vaccines helps target the inductive sites for SIgA responses. The efficacy of such vaccines relies on the identification and/or engineering of vaccine adjuvants capable of supporting the development of SIgA alongside systemic immunity and delivery systems that improve vaccine delivery to the targeted anatomic sites and immune cells.


Subject(s)
Adjuvants, Immunologic , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Mucous Membrane/immunology , Vaccines/immunology , Animals , Cytokines/immunology , Humans , Immunoglobulin A, Secretory/immunology , Vaccines/administration & dosage
16.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 416-421, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27376814

ABSTRACT

The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Dental Caries/prevention & control , Glucosyltransferases/immunology , Streptococcal Vaccines/immunology , Streptococcus mutans/immunology , Virulence Factors/immunology , Antibodies, Bacterial/biosynthesis , Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Case-Control Studies , Child, Preschool , Dental Caries/immunology , Dental Caries/pathology , Epitopes/chemistry , Epitopes/immunology , Female , Glucosyltransferases/chemistry , Humans , Immunoglobulin A, Secretory/biosynthesis , Male , Peptides/chemistry , Peptides/immunology , Saliva/chemistry , Saliva/microbiology , Severity of Illness Index , Streptococcal Vaccines/biosynthesis , Streptococcal Vaccines/chemistry , Streptococcus mutans/chemistry , Streptococcus mutans/pathogenicity , Vaccines, Subunit , Virulence Factors/chemistry
17.
Science ; 352(6287): aaf4822, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27174992

ABSTRACT

Immunoglobulin A (IgA) induction primarily occurs in intestinal Peyer's patches (PPs). However, the cellular interactions necessary for IgA class switching are poorly defined. Here we show that in mice, activated B cells use the chemokine receptor CCR6 to access the subepithelial dome (SED) of PPs. There, B cells undergo prolonged interactions with SED dendritic cells (DCs). PP IgA class switching requires innate lymphoid cells, which promote lymphotoxin-ß receptor (LTßR)-dependent maintenance of DCs. PP DCs augment IgA production by integrin αvß8-mediated activation of transforming growth factor-ß (TGFß). In mice where B cells cannot access the SED, IgA responses against oral antigen and gut commensals are impaired. These studies establish the PP SED as a niche supporting DC-B cell interactions needed for TGFß activation and induction of mucosal IgA responses.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin Class Switching , Peyer's Patches/immunology , Receptors, CCR6/immunology , Animals , Cell Communication/immunology , Cell Movement/immunology , Immunoglobulin A, Secretory/genetics , Integrins/immunology , Intestinal Mucosa/immunology , Lymphocyte Activation , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/immunology , Mice , Mice, Mutant Strains , Receptors, CCR6/genetics
18.
Gastroenterology ; 151(2): 311-23, 2016 08.
Article in English | MEDLINE | ID: mdl-27132185

ABSTRACT

BACKGROUND & AIMS: The liver receives blood from the gastrointestinal tract through the portal vein, and thereby is exposed continuously to dietary antigens and commensal bacteria. Alcoholic liver disease (ALD) is associated with intestinal dysbiosis, increased intestinal permeability, release of microbes into the portal circulation, and increased serum levels and liver deposits of IgA. We characterized B-cell production of IgA in livers of mice at homeostasis, after oral immunization, in a mouse model of ALD and in human liver samples. METHODS: We performed studies with Balb/c and C57BL/6-Ly5.1 mice, as well as transgenic mice (quasimonoclonal, activation-induced [cytidine] deaminase-Cre-tamoxifen-dependent estrogen receptor 2 [ERT2], Blimp-1-green fluorescent protein [GFP]). C57BL/6-Ly5.1 mice were fed chronic plus binge ethanol to create a model of ALD. Some mice also were given repeated injections of FTY720, which prevents egress of IgA-secreting cells from Peyer's patches. We obtained nontumor liver tissues from patients with colorectal carcinoma undergoing surgery for liver metastases or hepatocellular carcinoma. B cells were isolated from mouse and human liver tissues and analyzed by flow cytometry and enzyme-linked ImmunoSpot (ELISpot). In wild-type and transgenic mice, we traced newly generated IgA-secreting cells at steady state and after oral immunization with 4-hydroxy-3-nitrophenylacetyl (NP)-Ficoll or cholera toxin. IgA responses were also evaluated in our model of ALD. RESULTS: Livers of control mice contained proliferative plasmablasts that originated from Peyer's patches and produced IgAs reactive to commensal bacteria. After oral immunization with cholera toxin or a thymus-independent antigen, a substantial number of antigen-specific IgA-secreting cells was found in the liver. Mice fed ethanol had features of hepatitis and increased numbers of IgA-secreting cells in liver, compared with mice given control diets, as well as higher levels of serum IgA and IgA deposits in liver sinusoids. Injection of FTY720 during ethanol feeding reduced liver and serum levels of IgA and IgA deposits in liver and prevented liver injury. Human liver tissues contained a significant proportion of IgA-producing plasma cells that shared phenotypic and functional attributes with those from mouse liver, including reactivity to commensal bacteria. CONCLUSIONS: Based on studies of mice and human liver tissues, we found the liver to be a site of IgA production by B cells, derived from gut-associated lymphoid tissues. These IgAs react with commensal bacteria and oral antigens. Livers from mice with ethanol-induced injury contain increased numbers of IgA-secreting cells and have IgA deposits in sinusoids. IgAs in the liver could mediate clearance of gut-derived antigens that arrive through portal circulation at homeostasis and protect these organs from pathogens.


Subject(s)
Antigens/immunology , Hepatocytes/metabolism , Immunoglobulin A, Secretory/biosynthesis , Intestines/immunology , Liver/cytology , Peyer's Patches/immunology , Animals , B-Lymphocytes/immunology , Hepatocytes/immunology , Humans , Liver/immunology , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
19.
Arch Oral Biol ; 67: 22-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27019137

ABSTRACT

OBJECTIVE: Explore the associations between the severity of dental caries in childhood, mutans streptococci (MS) levels and IgA antibody response against Streptococcus mutans GbpB. Moreover, other caries-related etiological factors were also investigated. DESIGN: 36-60 month-old children were grouped into Caries-Free (CF, n=19), Early Childhood Caries (ECC, n=17) and Severe Early Childhood Caries (S-ECC, n=21). Data from socio-economic-cultural status, oral hygiene habits and dietary patterns were obtained from a questionnaire and a food-frequency diary filled out by parents. Saliva was collected from children for microbiological analysis and detection of salivary IgA antibody reactive with S. mutans GbpB in western blot. RESULTS: S-ECC children had reduced family income compared to those with ECC and CF. There was difference between CF and caries groups (ECC and S-ECC) in MS counts. Positive correlations between salivary IgA antibody response against GbpB and MS counts were found when the entire population was evaluated. When children with high MS counts were compared, S-ECC group showed significantly lower IgA antibody levels to GbpB compared to CF group. This finding was not observed for the ECC group. CONCLUSIONS: This study suggests that children with S-ECC have reduced salivary IgA immune responses to S. mutans GbpB, potentially compromising their ability to modify MS infection and its cariogenic potential. Furthermore, a reduced family income and high levels of MS were also associated with S-ECC.


Subject(s)
Dental Caries/immunology , Dental Caries/microbiology , Immunoglobulin A, Secretory/immunology , Saliva/immunology , Streptococcus mutans/immunology , Antibody Formation , Antigens, Bacterial/immunology , Bacterial Load , Blotting, Western , Carrier Proteins/immunology , Child, Preschool , Female , Humans , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Lectins/immunology , Male , Surveys and Questionnaires
20.
Biochem Biophys Res Commun ; 462(3): 269-74, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-25957472

ABSTRACT

Urease is considered as an excellent vaccine candidate antigen against Helicobacter pylori (H. pylori) infection. Our previous study reported a novel multi-epitope vaccine CTB-UE which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and five cell epitopes from urease subunits. Murine experiments indicated that it could induce cellular and humoral immune responses intensively and attenuate H. pylori infection effectively in mice model. However, the body expression and lack of suitable adjuvant of this epitope vaccine restricted its application. In this study, new recombinant Escherichia coli strains was established to increase the solubility by fusing thioredoxin (Trx) and the combination adjuvants which composed of the chitosan and CpG were adopted to enhance the immunogenicity of CTB-UE for oral immunization. The experimental results indicated that the levels of IgG2a, IgG1 and IgA in the serum and the levels of sIgA in stomach, intestine and feces were significantly higher in the vaccinated group compared with the model control group. Additionally, chitosan-CpG combination adjuvants changed the ratio of IgG2a/IgG1 and conferred Th1/Th17-mediated protective immune responses. These results demonstrate that the oral vaccine with chitosan-CpG as combination adjuvants may be a promising vaccine candidate against H. pylori infection.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Chitosan/administration & dosage , Chitosan/immunology , Cholera Toxin/administration & dosage , Cholera Toxin/immunology , CpG Islands/immunology , Helicobacter Infections/prevention & control , Helicobacter pylori/immunology , Urease/administration & dosage , Urease/immunology , Administration, Oral , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/blood , Antibody Specificity , Bacterial Vaccines/genetics , Cytokines/biosynthesis , Epitopes/administration & dosage , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/enzymology , Helicobacter pylori/genetics , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Male , Mice , Mice, Inbred BALB C , Urease/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...