Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
J Chem Theory Comput ; 20(6): 2630-2642, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38445482

ABSTRACT

The development of highly potent antibodies and antibody fragments as binding agents holds significant implications in fields such as biosensing and biotherapeutics. Their binding strength is intricately linked to the arrangement and composition of residues at the binding interface. Computational techniques offer a robust means to predict the three-dimensional structure of these complexes and to assess the affinity changes resulting from mutations. Given the interdependence of structure and affinity prediction, our objective here is to disentangle their roles. We aim to evaluate independently six side-chain reconstruction methods and ten binding affinity estimation techniques. This evaluation was pivotal in predicting affinity alterations due to single mutations, a key step in computational affinity maturation protocols. Our analysis focuses on a data set comprising 27 distinct antibody/hen egg white lysozyme complexes, each with crystal structures and experimentally determined binding affinities. Using six different side-chain reconstruction methods, we transformed each structure into its corresponding mutant via in silico single-point mutations. Subsequently, these structures undergo minimization and molecular dynamics simulation. We therefore estimate ΔΔG values based on the original crystal structure, its energy-minimized form, and the ensuing molecular dynamics trajectories. Our research underscores the critical importance of selecting reliable side-chain reconstruction methods and conducting thorough molecular dynamics simulations to accurately predict the impact of mutations. In summary, our study demonstrates that the integration of conformational sampling and scoring is a potent approach to precisely characterizing mutation processes in single-point mutagenesis protocols and crucial for computational antibody design.


Subject(s)
Antibodies , Immunoglobulin Fragments , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Antibodies/chemistry , Mutation , Mutagenesis , Point Mutation , Protein Binding
2.
Biol Pharm Bull ; 46(12): 1661-1665, 2023.
Article in English | MEDLINE | ID: mdl-38044090

ABSTRACT

We generated three single-chain Fv fragments (scFvs) specific to cortisol according to our original affinity-maturation strategy and verified their utility in developing immunoassays. These scFv mutants (m-scFvs) had insertion of one, four, or six amino acid(s) in the framework region 1 of the VH-domain and showed >55-fold higher affinity (Ka, 2.0 - 2.2 × 1010 M-1) than the unmodified scFv (wt-scFv). Each m-scFv was fused with NanoLuc luciferase (NLuc) for the use in enzyme-linked immunosorbent assays (ELISAs). In these ELISA, the m-scFv-NLuc fusions were competitively reacted with immobilized cortisol residues and cortisol standards, and then the bound NLuc activity was monitored luminometrically. The luminescent ELISAs generated dose-response curves with extremely low midpoints (approx. 3 pg/assay) and were >150-fold more sensitive than the colorimetric ELISAs using wt-scFv and >8000-fold more sensitive than the ELISA using the parental native antibody. The luminescent ELISAs showed acceptable cross-reactivity patterns with related steroids, and the determination of control sera afforded cortisol levels in the reference range with satisfactory parallelism.


Subject(s)
Hydrocortisone , Single-Chain Antibodies , Hydrocortisone/analysis , Amino Acids , Single-Chain Antibodies/genetics , Enzyme-Linked Immunosorbent Assay , Cross Reactions , Immunoglobulin Fragments/chemistry , Antibody Affinity
3.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630749

ABSTRACT

Many therapeutic proteins are small in size and are rapidly cleared from circulation. Consequently, half-life extension strategies have emerged to improve pharmacokinetic properties, including fusion or binding to long-lasting serum proteins, chemical modifications with hydrophilic polymers such as PEGylation, or, more recently, fusion to PEG mimetic polypeptides. In the present study, two different PEG mimetic approaches, the GlycoTAIL and the FlexiTAIL, were applied to increase the hydrodynamic radius of antibody fragments of different sizes and valencies, including scFv, diabody, and scFv-EHD2 fusion proteins. The GlycoTAIL and FlexiTAIL sequences of varying lengths are composed of aliphatic and hydrophilic residues, with the GlycoTAIL furthermore comprising N-glycosylation sites. All modified proteins could be produced in a mammalian expression system without reducing stability and antigen binding, and all modified proteins exhibited a prolonged half-life and increased drug disposition in mice. The strongest effects were observed for proteins comprising a FlexiTAIL of 248 residues. Thus, the GlycoTAIL and FlexiTAIL sequences represent a flexible and modular system to improve the pharmacokinetic properties of proteins.


Subject(s)
Antibodies , Immunoglobulin Fragments , Animals , Antibodies/chemistry , Carrier Proteins , Half-Life , Immunoglobulin Fragments/chemistry , Mice , Recombinant Fusion Proteins/chemistry
4.
Sci Rep ; 12(1): 5449, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361822

ABSTRACT

Single chain antibody fragments (scFvs) are favored in diagnostic and therapeutic fields thanks to their small size and the availability of various engineering approaches. Linker between variable heavy (VH) and light (VL) chains of scFv covalently links these domains and it can affect scFv's bio-physical/chemical properties and in vivo activity. Thus, scFv linker design is important for a successful scFv construction, and flexible linkers are preferred for a proper pairing of VH-VL. The flexibility of the linker is determined by length and sequence content and glycine-serine (GS) linkers are commonly preferred for scFvs based on their highly flexible profiles. Despite the advantage of this provided flexibility, GS linkers carry repeated sequences which can cause problems for PCR-based engineering approaches and immunogenicity. Here, two different linkers, a repetitive GS linker and an alternative non-repetitive linker with similar flexibility but lower immunogenicity are employed to generate anti-Vascular Endothelial Growth Factor scFvs derived from bevacizumab. Our findings highlight a better in vitro profile of the non-repetitive linker such as a higher monomer ratio, higher thermal stability while there was no significant difference in in vivo efficacy in a zebrafish embryonic angiogenesis model. This is the first study to compare in vivo efficacy of scFvs with different linkers in a zebrafish model.


Subject(s)
Immunoglobulin Variable Region , Zebrafish , Animals , Antibodies, Monoclonal , Immunoglobulin Fragments/chemistry , Immunoglobulin Variable Region/chemistry , Vascular Endothelial Growth Factors
5.
J Mol Biol ; 434(8): 167455, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35033559

ABSTRACT

The fluorescent non-canonical amino acid (fNCAA) L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) contains a photoacidic 7-hydroxycoumarin (7-HC) side chain whose fluorescence properties can be tuned by its environment. In proteins, many alterations to 7-HCAA's fluorescence spectra have been reported including increases and decreases in intensity and red- and blue-shifted emission maxima. The ability to rationally design protein environments that alter 7-HCAA's fluorescence properties in predictable ways could lead to novel protein-based sensors of biological function. However, these efforts are likely limited by a lack of structural characterization of 7-HCAA-containing proteins. Here, we report the steady-state spectroscopic and x-ray crystallographic characterization of a 7-HCAA-containing antibody fragment (in the apo and antigen-bound forms) in which a substantially blue-shifted 7-HCAA emission maximum (∼70 nm) is observed relative to the free amino acid. Our structural characterization of these proteins provides evidence that the blue shift is a consequence of the fact that excited state proton transfer (ESPT) from the 7-HC phenol has been almost completely blocked by interactions with the protein backbone. Furthermore, a direct interaction between a residue in the antigen and the fluorophore served to further block proton transfer relative to the apoprotein. The structural basis of the unprecedented blue shift in 7-HCAA emission reported here provides a framework for the development of new fluorescent protein-based sensors.


Subject(s)
Biosensing Techniques , Glycine/analogs & derivatives , Immunoglobulin Fragments , Luminescent Proteins , Protons , Umbelliferones , Crystallography, X-Ray , Fluorescent Dyes/chemistry , Glycine/chemistry , Glycine/genetics , Immunoglobulin Fragments/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Spectrometry, Fluorescence , Umbelliferones/chemistry
6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681796

ABSTRACT

Neutrophil elastase (NE) is a serine protease released during neutrophil maturation. High levels of NE are related to lung tissue damage and poor prognosis in cancer; thus, NE is a potential target for therapeutic immunotherapy for multiple lung diseases and cancers. Here, we isolate and characterize two high-affinity, specific, and noncompetitive anti-NE antibodies Fab 1C10 and VH 1D1.43 from two large phage-displayed human Fab and VH libraries. After fusion with human IgG1 Fc, both of them (VH-Fc 1D1.43 and IgG1 1C10) inhibit NE enzymatic activity with VH-Fc 1D1.43 showing comparable inhibitory effects to that of the small molecule NE inhibitor SPCK and IgG1 1C10 exhibiting even higher (2.6-fold) activity than SPCK. Their epitopes, as mapped by peptide arrays combined with structural modeling, indicate different mechanisms for blocking NE activity. Both VH-Fc and IgG1 antibodies block NE uptake by cancer cells and fibroblast differentiation. VH-Fc 1D1.43 and IgG1 1C10 are promising for the antibody-based immunotherapy of cancer and inflammatory diseases.


Subject(s)
Inflammation/drug therapy , Leukocyte Elastase/immunology , Neoplasms/drug therapy , Proteinase Inhibitory Proteins, Secretory/therapeutic use , Cells, Cultured , Epitope Mapping , Humans , Immunoglobulin Domains/physiology , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/pharmacology , Immunoglobulin Fragments/therapeutic use , Immunotherapy/methods , Inflammation/immunology , Leukocyte Elastase/antagonists & inhibitors , Male , Models, Molecular , Molecular Targeted Therapy , Neoplasms/immunology , PC-3 Cells , Protein Structure, Secondary , Proteinase Inhibitory Proteins, Secretory/chemistry , Proteinase Inhibitory Proteins, Secretory/pharmacology
7.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34406751

ABSTRACT

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Subject(s)
Complementarity Determining Regions/chemistry , Immunoglobulin Fragments/chemistry , Peptides, Cyclic/chemical synthesis , Amino Acid Sequence , Animals , Cattle , Immunoglobulin Fragments/blood , Immunoglobulin Fragments/pharmacology , Male , Models, Molecular , Peptides, Cyclic/blood , Peptides, Cyclic/pharmacokinetics , Protein Binding , Protein Domains , Protein Folding , Rats, Sprague-Dawley , Solid-Phase Synthesis Techniques , Tandem Mass Spectrometry , Thermodynamics
8.
Protein Expr Purif ; 187: 105931, 2021 11.
Article in English | MEDLINE | ID: mdl-34197919

ABSTRACT

We have successfully produced a recombinant human matrix metalloproteinase 9 (hMMP9) antigen with high yield and purity and used it to generate a hybridoma cell-culture-based monoclonal anti-hMMP9 antibody. We selected the most effective antibody for binding antigens and successfully identified its nucleotide sequence. The entire antigen and antibody developmental procedures described herein can be a practical approach for producing large amounts of monoclonal antibodies against hMMP9 and other antigens of interest. Additionally, the nucleotide sequence information of the anti-hMMP9 monoclonal antibody revealed herein will be useful for the generation of recombinant antibodies or antibody fragments against hMMP9.


Subject(s)
Antibodies, Monoclonal/genetics , Matrix Metalloproteinase 9/genetics , Recombinant Proteins/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Base Sequence , Cell Culture Techniques , Gene Expression Regulation , Humans , Hybridomas/cytology , Immunoglobulin Fragments/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase 9/immunology , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Solubility
9.
Ultramicroscopy ; 227: 113302, 2021 08.
Article in English | MEDLINE | ID: mdl-34062386

ABSTRACT

A computational method was developed to recover the three-dimensional coordinates of gold nanoparticles specifically attached to a protein complex from tilt-pair images collected by electron microscopy. The program was tested on a simulated dataset and applied to a real dataset comprising tilt-pair images recorded by cryo electron microscopy of RNA polymerase II in a complex with four gold-labeled single-chain antibody fragments. The positions of the gold nanoparticles were determined, and comparison of the coordinates among the tetrameric particles revealed the range of motion within the protein complexes.


Subject(s)
Gold/chemistry , Image Processing, Computer-Assisted/methods , Immunoglobulin Fragments , Metal Nanoparticles/chemistry , RNA Polymerase II , Cryoelectron Microscopy/methods , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/metabolism , Models, Molecular , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism
10.
J Chromatogr A ; 1648: 462181, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33989897

ABSTRACT

The elution and adsorptive behavior of a bivalent bispecific antibody (BiSAb), comprising an IgG1 framework with a scFv domain genetically fused to each heavy chain C-terminus via flexible linkers, and of two associated fragments were studied on two cation exchange chromatography media - ProPac WCX-10, which is pellicular and suitable for analytical use, and Nuvia HR-S, which is macroporous and suitable for preparative and process scale uses. Both fragments were identified by MS as missing one of the two scFv domains and its flexible linker, but one of them also contains an additional C-terminal lysine. The separation of these fragments on both resins occurs as a result of differences in non-specific ligand-protein interactions that are modulated by the salt concentration. For the ProPac WCX-10 column, complex, multipeak elution behaviors are observed, since, as a result of the linker flexibility, both the intact molecule and the fragments appear to exist in multiple binding configurations with each scFv domains either collapsed onto the IgG framework or extended away from it. With a residence time of 2.5 min and at 21 °C, two peak elution is observed for the fragments which contain a single linked scFv and three peak elution for the intact molecule which contains two linked scFvs. This behavior is affected by residence time, temperature, and hold time. Increasing the residence time to 25 min or increasing temperature to 40°C results in elution of a single, merged peak for each of the protein species. For Nuvia HR-S, the broader peaks, obtained as a result of mass transfer limitations, tend to obscure the multipeak elution behavior. Nevertheless, even for this resin, the effects of configurational flexibility are still manifested at the single-particle scale and affect the evolution of the patterns of protein binding within individual resin particles as evident from confocal microscopy observations.


Subject(s)
Antibodies, Bispecific/chemistry , Chromatography, Ion Exchange/methods , Immunoglobulin Fragments/chemistry , Adsorption , Protein Binding
11.
AAPS J ; 23(3): 62, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33942169

ABSTRACT

Quantitative modeling of the subcutaneous absorption processes of protein therapeutics is challenging. Here we have proposed a "two-pore" PBPK model that is able to simultaneously characterize plasma PK of different-size protein therapeutics in mice. The skin compartment is evolved to mechanistically account for the absorption pathways through lymph and blood capillaries, as well as local degradation at the SC injection site. The model is developed using in-house plasma PK data generated following subcutaneous administration of 6 different-size protein therapeutics (13-150 kDa) in mice. The model was able to capture plasma PK of all molecules following intravenous and subcutaneous administration relatively well. From the observed plasma PK profiles, as well as from the model simulation result, several important PK descriptors were found to be dependent on protein size for FcRn nonbinding molecules. A positive correlation was found between Tmax and protein size. A "U" shape relationship was found between Cmax and protein size. Negative correlations were observed between bioavailability (F) and local degradation rate (kdeg,SC), and F and protein size. Pathway analysis of the model was conducted for the subcutaneous absorption process, and continuous relationships were established between the percentage of absorption through lymphatic and vascular pathways and protein size. This PBPK model could serve as a platform for the development of different-size protein therapeutics and will be scaled up to humans for translational studies in the future.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Immunoglobulin Fragments/pharmacology , Models, Biological , Neoplasms/drug therapy , Subcutaneous Tissue/metabolism , Administration, Intravenous , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Biological Availability , Cell Line, Tumor , Computer Simulation , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/therapeutic use , Injections, Subcutaneous , Mice , Molecular Weight , Neoplasms/pathology , Subcutaneous Absorption , Tissue Distribution , Xenograft Model Antitumor Assays
12.
Sci Rep ; 11(1): 7880, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846482

ABSTRACT

Since the pandemic outbreak of Covid-19 in December 2019, several lateral flow assay (LFA) devices were developed to enable the constant monitoring of regional and global infection processes. Additionally, innumerable lateral flow test devices are frequently used for determination of different clinical parameters, food safety, and environmental factors. Since common LFAs rely on non-biodegradable nitrocellulose membranes, we focused on their replacement by cellulose-composed, biodegradable papers. We report the development of cellulose paper-based lateral flow immunoassays using a carbohydrate-binding module-fused to detection antibodies. Studies regarding the protein binding capacity and potential protein wash-off effects on cellulose paper demonstrated a 2.7-fold protein binding capacity of CBM-fused antibody fragments compared to the sole antibody fragment. Furthermore, this strategy improved the spatial retention of CBM-fused detection antibodies to the test area, which resulted in an enhanced sensitivity and improved overall LFA-performance compared to the naked detection antibody. CBM-assisted antibodies were validated by implementation into two model lateral flow test devices (pregnancy detection and the detection of SARS-CoV-2 specific antibodies). The CBM-assisted pregnancy LFA demonstrated sensitive detection of human gonadotropin (hCG) in synthetic urine and the CBM-assisted Covid-19 antibody LFA was able to detect SARS-CoV-2 specific antibodies present in serum. Our findings pave the way to the more frequent use of cellulose-based papers instead of nitrocellulose in LFA devices and thus potentially improve the sustainability in the field of POC diagnostics.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Carbohydrates/chemistry , Collodion/chemistry , Immunoassay/methods , Biocompatible Materials , Chorionic Gonadotropin/chemistry , Clostridium thermocellum/immunology , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Point-of-Care Systems , Protein Binding , SARS-CoV-2/immunology , Urinalysis
13.
Structure ; 29(6): 598-605.e3, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33636101

ABSTRACT

This work presents a method for introducing synthetic symmetry into protein crystallization samples using an antibody fragment termed a diabody (Dab). These Dabs contain two target binding sites, and engineered disulfide bonds have been included to modulate Dab flexibility. The impacts of Dab engineering have been observed through assessment of thermal stability, small-angle X-ray scattering, and high-resolution crystal structures. Complexes between the engineered Dabs and HIV-1 reverse transcriptase (RT) bound to a high-affinity DNA aptamer were also generated to explore the capacity of engineered Dabs to enable the crystallization of bound target proteins. This strategy increased the crystallization hit frequency obtained for RT-aptamer, and the structure of a Dab-RT-aptamer complex was determined to 3.0-Å resolution. Introduction of synthetic symmetry using a Dab could be a broadly applicable strategy, especially when monoclonal antibodies for a target have previously been identified.


Subject(s)
Disulfides/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/metabolism , Aptamers, Nucleotide/metabolism , Crystallography, X-Ray , HIV Reverse Transcriptase/chemistry , Models, Molecular , Protein Conformation
14.
J Phys Chem Lett ; 12(5): 1438-1442, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33523655

ABSTRACT

The dramatic impact novel viruses can have on humans could be more quickly mitigated if generic antibodies already present in one's system are temporarily retrained to recognize these viruses. This type of intervention can be administered during the early stages of infection, while a specific immune response is being developed. With this idea in mind, double-faced peptide-based boosters were computationally designed to allow recognition of SARS-CoV-2 by Hepatitis B antibodies. One booster face is made of ACE2-mimic peptides that can bind to the receptor binding domain (RBD) of SARS-CoV-2. The other booster face is composed of a Hepatitis B core-antigen, targeting the Hepatitis B antibody fragment. Molecular dynamics simulations revealed that the designed boosters have a highly specific and stable binding to both the RBD and the antibody fragment (AF). This approach can provide a cheap and efficient neutralization of emerging pathogens.


Subject(s)
Hepatitis B Antibodies/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Humans , Immunoglobulin Fragments/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Protein Conformation , Single-Chain Antibodies/chemistry , Thermodynamics
15.
Bioelectrochemistry ; 137: 107643, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32891964

ABSTRACT

In this report, an electrochemical immunosensor for the selective and sensitive monitoring of Aß1-42 fibrils is presented. The sensing platform was prepared by the formation of a 4,4'-thiobisbenzenethiol (TBBT) self-assembled monolayer on a clean gold surface followed by the covalent entrapment of gold nanoparticles (AuNPs). The half-antibody fragments of the Anti-Amyloid Fibrils antibody were immobilized on AuNPs via S-Au covalent bonds. Each step of immunosensor fabrication was characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was successfully used for the sensing of Aß1-42 fibrils in both phosphate saline buffer (PBS) and artificial blood plasma (ABP). The immunosensor sensitivity estimated based on calibration slopes was better in the presence of APP in the comparison to PBS. The LOD values obtained for both measuring media were of 0.6 pM level. The moderate response towards Aß1-42 oligomers demonstrated the immunosensor selectivity.


Subject(s)
Amyloid beta-Peptides/blood , Blood Substitutes/chemistry , Electrochemical Techniques/methods , Immunoassay/methods , Immunoglobulin Fragments/chemistry , Peptide Fragments/blood , Antibodies, Immobilized , Calibration , Dielectric Spectroscopy , Electrochemical Techniques/instrumentation , Electrodes , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Plasma/chemistry
16.
Methods Mol Biol ; 2247: 77-103, 2021.
Article in English | MEDLINE | ID: mdl-33301113

ABSTRACT

Fv and Fab antibody fragments are versatile co-crystallization partners that aid in the structural determination of otherwise "uncrystallizable" proteins, including human/mammalian membrane proteins. Accessible methods for the rapid and reliable production of recombinant antibody fragments have been long sought. In this chapter, we describe the concept and protocols of the intervening removable affinity tag (iRAT) system for the efficient production of Fv and Fab fragments in milligram quantities, which are sufficient for structural studies. As an extension of the iRAT system, we also provide a new method for the creation of genetically encoded fluorescent Fab fragments, which are potentially useful as molecular devices in various basic biomedical and clinical procedures, such as immunofluorescence cytometry, bioimaging, and immunodiagnosis.


Subject(s)
Chromatography, Affinity , Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/isolation & purification , Recombinant Fusion Proteins , Amino Acid Sequence , Animals , Antibody Affinity , Baculoviridae/genetics , Base Sequence , Cell Line , Chromatography, Affinity/methods , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Gene Order , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Models, Molecular , Plasmids/genetics , Protein Conformation , Proteolysis , Sf9 Cells , Structure-Activity Relationship
17.
Anal Biochem ; 616: 114090, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33383001

ABSTRACT

The free sulfhydryl groups of the hinge region of monovalent antibody fragments (rIgG) allow the orientation of rIgG on functionalized surfaces in immunosensors. To evaluate the contribution of reduction and orientation on signal enhancement we compared the performance of whole antibodies and their rIgG in ELISA performed on polystyrene or maleimide-functionalized microplates. Monoclonal anti-horseradish peroxidase (anti-HRP) and monoclonal anti-fPSA antibodies (1 mg/mL) were reduced with 2-mercaptoethylamine (53 mM). Western blot confirmed the presence of rIgG as a band at 75 kDa, detectable only by anti-heavy chain but not by anti-light chain antibodies, suggesting a possible folding rearrangement. Using anti-HRP we confirmed the retention of the antigen binding capacity of rIgG. Moreover, we observed a signal enhancement for rIgG even if randomly absorbed on polystyrene [linear regression slope (95%CI): rIgG 0.524 (0.434-0.614), IgG 0.370 (0.430-0.399); P = 0.0016] suggesting that chemical reduction might affect the antigen binding capacity of antibodies. ELISA with anti-fPSA rIgG coated on polystyrene confirmed these observations. Oriented anti-fPSA rIgG on a maleimide surface showed comparable signals to the assay performed on polystyrene for each analyzed concentration of antigen (PANOVA = 0.1980), anyway, with a significant improvement of the repeatability likely providing a more homogeneous capturing surface (SD rIgGmaleimide-rIgGpolystirene: fPSA 0.725 ng/mL:0.74-2.89; 1.45 ng/mL:1.56-8.69; 3.625 ng/mL:3.52-15.03; 7.25 ng/mL:7.78-18.44).


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/immunology , Animals , Binding Sites, Antibody , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Maleimides/chemistry , Oxidation-Reduction , Polystyrenes/chemistry , Reproducibility of Results , Sulfhydryl Compounds/chemistry
18.
Chembiochem ; 22(7): 1205-1209, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33207032

ABSTRACT

Antibody conjugates have taken a great leap forward as tools in basic and applied molecular life sciences that was enabled by the development of chemoselective reactions for the site-specific modification of proteins. Antibody-oligonucleotide conjugates combine the antibody's target specificity with the reversible, sequence-encoded binding properties of oligonucleotides like DNAs or peptide nucleic acids (PNAs), allowing sequential imaging of large numbers of targets in a single specimen. In this report, we use the Tub-tag® technology in combination with Cu-catalyzed azide-alkyne cycloaddition for the site-specific conjugation of single DNA and PNA strands to an eGFP-binding nanobody. We show binding of the conjugate to recombinant eGFP and subsequent sequence-specific annealing of fluorescently labelled imager strands. Furthermore, we reversibly stain eGFP-tagged proteins in human cells, thus demonstrating the suitability of our conjugation strategy to generate antibody-oligonucleotides for reversible immunofluorescence imaging.


Subject(s)
DNA/chemistry , Immunoglobulin Fragments/chemistry , Microscopy, Fluorescence , Peptide Nucleic Acids/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Cell Line , Copper/chemistry , Cycloaddition Reaction , Green Fluorescent Proteins/chemistry , Humans , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Immunoglobulin Fragments/metabolism , Single-Domain Antibodies/chemistry
19.
BMC Neurosci ; 21(1): 36, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887544

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) is the second leading cause of early onset dementia following Alzheimer's disease. It involves atrophy of the frontal and temporal regions of the brain affecting language, memory, and behavior. Transactive response DNA-binding protein 43 (TDP-43) pathology is found in most FTD and ALS cases. It plays a role in transcription, translation and serves as a shuttle between the nucleus and cytoplasm. Prior to its aggregation, TDP-43 exists as polyubiquitinated, hyperphosphorylated C-terminal fragments that correlate well with FTD disease progression. Because of the importance of TDP-43 in these diseases, reagents that can selectively recognize specific toxic TDP variants associated with onset and progression of FTD can be effective diagnostic and therapeutic tools. RESULTS: We utilized a novel atomic force microscopy (AFM) based biopanning protocol to isolate single chain variable fragments (scFvs) from a phage display library that selectively bind TDP variants present in human FTD but not cognitively normal age matched brain tissue. We then used the scFvs (FTD-TDP1 through 5) to probe post-mortem brain tissue and sera samples for the presence of FTD related TDP variants. The scFvs readily selected the FTD tissue and sera samples over age matched controls. The scFvs were used in immunohistochemical analysis of FTD and control brain slices where the reagents showed strong staining with TDP in FTD brain tissue slice. FTD-TDP1, FTD-TDP2, FTD-TDP4 and FTD-TDP5 all protected neuronal cells against FTD TDP induced toxicity suggesting potential therapeutic value. CONCLUSIONS: These results show existence of different disease specific TDP variants in FTD individuals. We have identified a panel of scFvs capable of recognizing these disease specific TDP variants in postmortem FTD tissue and sera samples over age matched controls and can thus serve as a biomarker tool.


Subject(s)
DNA-Binding Proteins/genetics , Frontotemporal Dementia/genetics , Immunoglobulin Fragments/isolation & purification , TDP-43 Proteinopathies/diagnosis , TDP-43 Proteinopathies/genetics , Antibody Specificity , Biomarkers , Biotinylation , Brain/immunology , DNA-Binding Proteins/chemistry , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/immunology , Genetic Variation , Humans , Immunoglobulin Fragments/chemistry , Immunohistochemistry , Microscopy, Atomic Force , Sensitivity and Specificity , TDP-43 Proteinopathies/immunology
20.
Anal Chem ; 92(15): 10822-10829, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32615755

ABSTRACT

The availability of reliable methods for the characterization of the binding of small molecule ligands to protein targets is crucially important for drug discovery. We have adapted a method, routinely used for the characterization of monoclonal antibodies (enzyme-linked immunosorbent assay, or "ELISA"), to small molecule ligands, using fluorescein conjugates and antifluorescein antibodies as detection reagents. The new small molecule-ELISA methodology was tested using a panel of binders specific to carbonic anhydrase II, with dissociation constants ranging between 6 µM and 14 nM. An excellent agreement was found between ELISA measurements and fluorescence polarization results. The methodology was also extended to BIAcore measurements and implemented for ligands coupled to oligonucleotides. Small molecule-ELISA procedures are particularly useful in the context of DNA-encoded libraries, for which hit validation procedures need to be performed on dozens of candidate molecules and hit compounds can be conveniently resynthesized on DNA.


Subject(s)
Fluorescein/chemistry , Immunoglobulin Fragments/chemistry , Small Molecule Libraries/chemistry , Animals , Cattle , Ligands , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...