Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.424
Filter
1.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528347

ABSTRACT

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Subject(s)
Histocompatibility Antigens Class I , Immunoglobulin G , Receptors, Fc , Humans , Antibodies, Monoclonal/metabolism , Histocompatibility Antigens Class I/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Polysaccharides , Receptors, Fc/genetics , Protein Engineering/methods , Plants/genetics , Plants/metabolism
2.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542917

ABSTRACT

BACKGROUND: Immunoglobulin G (IgG) N-glycosylation is considered a potential biomarker for aging and various pathological conditions. However, whether these changes in IgG N-glycosylation are a consequence or a contributor to the aging process remains unclear. This study aims to investigate the causality between IgG N-glycosylation and aging using Mendelian randomization (MR) analysis. METHODS: We utilized genetic variants associated with IgG N-glycosylation traits, the frailty index (FI), and leukocyte telomere length (LTL) from a previous genome-wide association study (GWAS) on individuals of European ancestry. Two-sample and multivariable MR analyses were conducted, employing the inverse-variance weighted (IVW) method. Sensitivity analyses were performed to assess potential confounding factors. RESULTS: Using the IVW method, we found suggestive evidence of a causal association between GP14 and FI (ß 0.026, 95% CI 0.003 to 0.050, p = 0.027) and LTL (ß -0.020, 95% CI -0.037 to -0.002, p = 0.029) in the two-sample MR analysis. In the multivariable MR analysis, suggestive evidence was found for GP23 and FI (ß -0.119, 95% CI -0.219 to -0.019, p = 0.019) and GP2 and LTL (ß 0.140, 95% CI 0.020 to 0.260, p = 0.023). CONCLUSIONS: In conclusion, our results supported a potentially causal effect of lower GP23 levels on an advanced aging state. Additional verification is required to further substantiate the causal relationship between glycosylation and aging.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Glycosylation , Immunoglobulin G/genetics , Aging/genetics
3.
MAbs ; 16(1): 2330113, 2024.
Article in English | MEDLINE | ID: mdl-38527972

ABSTRACT

Despite the large number of existing bispecific antibody (bsAb) formats, the generation of novel bsAbs is still associated with development and bioprocessing challenges. Here, we present RUBY, a novel bispecific antibody format that allows rapid generation of bsAbs that fulfill key development criteria. The RUBYTM format has a 2 + 2 geometry, where two Fab fragments are linked via their light chains to the C-termini of an IgG, and carries mutations for optimal chain pairing. The unique design enables generation of bsAbs with mAb-like attributes. Our data demonstrate that RUBY bsAbs are compatible with small-scale production systems for screening purposes and can be produced at high yields (>3 g/L) from stable cell lines. The bsAbs produced are shown to, in general, contain low amounts of aggregates and display favorable solubility and stress endurance profiles. Further, compatibility with various IgG isotypes is shown and tailored Fc gamma receptor binding confirmed. Also, retained interaction with FcRn is demonstrated to translate into a pharmacokinetic profile in mice and non-human primates that is comparable to mAb controls. Functionality of conditional active RUBY bsAbs is confirmed in vitro. Anti-tumor effects in vivo have previously been demonstrated, and shown to be superior to a comparable mAb, and here it is further shown that RUBY bsAbs penetrate and localize to tumor tissue in vivo. In all, the RUBY format has attractive mAb-like attributes and offers the possibility to mitigate many of the development challenges linked to other bsAb formats, facilitating both high functionality and developability.


Subject(s)
Antibodies, Bispecific , Neoplasms , Animals , Mice , Cell Line , Immunoglobulin G/genetics
4.
J Clin Immunol ; 44(3): 66, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38363477

ABSTRACT

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.


Subject(s)
Cytidine Deaminase , Hyper-IgM Immunodeficiency Syndrome , Immunoglobulin Class Switching , Humans , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Hyper-IgM Immunodeficiency Syndrome/genetics , Immunoglobulin A/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin G/genetics , Phenotype , Somatic Hypermutation, Immunoglobulin
5.
J Proteome Res ; 23(3): 1088-1101, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38363599

ABSTRACT

Fc γ-receptors (FcγRs) on leukocytes bind immunoglobulin G (IgG) immune complexes to mediate effector functions. Dysregulation of FcγR-mediated processes contributes to multiple inflammatory diseases, including rheumatoid arthritis, lupus, and immune thrombocytopenia. Critically, immunoregulatory N-glycan modifications on both FcγRs and IgGs alter FcγR-IgG binding affinity. Rapid methods for the characterization of N-glycans across multiple Fcγ receptors are needed to propel investigations into disease-specific contributions of FcγR N-glycans. Here, we utilize nanoliquid chromatography tandem mass spectrometry (nLC-MS/MS) to characterize FcγR glycosylation and report quantitative and site-specific N-glycan characterization of recombinant human FcγRI, FcγRIIIA V158, and FcγRIIIA F158 from CHO cells and murine FcγRI, FcγRIII, and FcγRIV from NS0 cells. Data are available via ProteomeXchange with identifier PXD043966. Broad glycoform distribution (≥30) was observed at mouse FcγRIV site N159 and human FcγRIIIA site N162, an evolutionarily conserved site. Further, mouse FcγRIII N-glycopeptides spanning all four predicted N-glycosylation sequons were detected. Glycoform relative abundances for hFcγRIIIA V/F158 polymorphic variants are reported, demonstrating the clinical potential of this workflow to measure differences in glycosylation between common human FcγRIIIA allelic variants with disease-associated outcomes. The multi-Fcγ receptor glycoproteomic workflow reported here will empower studies focused on the role of FcγR N-glycosylation in autoimmune diseases.


Subject(s)
Receptors, IgG , Tandem Mass Spectrometry , Humans , Animals , Mice , Cricetinae , Glycosylation , Receptors, IgG/genetics , Cricetulus , Immunoglobulin G/genetics , Polysaccharides
6.
J Clin Invest ; 134(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357917

ABSTRACT

Immunoglobulin G (IgG) antibodies in the form of high-dose intravenous immunoglobulin (IVIG) exert immunomodulatory activity and are used in this capacity to treat inflammatory and autoimmune diseases. Reductionist approaches have revealed that terminal sialylation of the single asparagine-linked (N-linked) glycan at position 297 of the IgG1 Fc bestows antiinflammatory activity, which can be recapitulated by introduction of an F241A point mutation in the IgG1 Fc (FcF241A). Here, we examined the antiinflammatory activity of CHO-K1 cell-produced FcF241A in vivo in models of autoimmune inflammation and found it to be independent of sialylation. Intriguingly, sialylation markedly improved the half-life and bioavailability of FcF241A via impaired interaction with the asialoglycoprotein receptor ASGPR. Further, FcF241A suppressed inflammation through the same molecular pathways as IVIG and sialylated IgG1 Fc and required the C-type lectin SIGN-R1 in vivo. This contrasted with FcAbdeg (efgartigimod), an engineered IgG1 Fc with enhanced neonatal Fc receptor (FcRn) binding, which reduced total serum IgG concentrations, independent of SIGN-R1. When coadministered, FcF241A and FcAbdeg exhibited combinatorial antiinflammatory activity. Together, these results demonstrated that the antiinflammatory activity of FcF241A requires SIGN-R1, similarly to that of high-dose IVIG and sialylated IgG1, and can be used in combination with other antiinflammatory therapeutics that rely on divergent pathways, including FcAbdeg.


Subject(s)
Immunoglobulin G , Immunoglobulins, Intravenous , Infant, Newborn , Humans , Immunoglobulin G/genetics , Immunoglobulin G/pharmacology , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/pharmacology , Inflammation/genetics , Inflammation/drug therapy , Receptors, Fc/genetics , Glycosylation
7.
PLoS One ; 19(2): e0298723, 2024.
Article in English | MEDLINE | ID: mdl-38346054

ABSTRACT

BACKGROUND: Febrile jaundice is a common indicator of certain infectious diseases, including hepatitis E. In Cameroon, the yellow fever virus is the only pathogen that is monitored in patients who present with this symptom. However, more than 90% of the samples received as part of this surveillance are negative for yellow fever. This study aimed to describe the prevalence and hepatitis E virus (HEV) genotype among yellow fever-negative patients in the Far North and West regions of Cameroon. METHODS: In a cross-sectional study, yellow fever surveillance-negative samples collected between January 2021 and January 2023 were retrospectively analyzed. Anti-HEV IgM and IgG antibodies were tested using commercially available ELISA kits. Anti-HEV IgM and/or IgG positive samples were tested for HEV RNA by real-time RT-PCR, followed by nested RT-PCR, sequencing and phylogenetic analysis. RESULTS: Overall, 121 of the 543 samples (22.3%, 95% CI: 19.0% - 26.0%) were positive for at least one anti-HEV marker. Amongst these, 8.1% (44/543) were positive for anti-HEV IgM, 5.9% (32/543) for anti-HEV IgG, and 8.3% (45/544) for both markers. A total of 15.2% (12/79) samples were positive for HEV RNA real-time RT-PCR and 8 samples were positive for HEV RNA by nested RT-PCR. Phylogenetic analysis showed that the retrieved sequences clustered within HEV genotypes/subtypes 1/1e, 3/3f and 4/4b. CONCLUSION: Our results showed that HEV is one of the causes of acute febrile jaundice in patients enrolled in the yellow fever surveillance program in two regions of Cameroon. We described the circulation of three HEV genotypes, including two zoonotic genotypes. Further studies will be important to elucidate the transmission routes of these zoonotic HEV genotypes to humans in Cameroon.


Subject(s)
Hepatitis E virus , Hepatitis E , Jaundice , Yellow Fever , Humans , Hepatitis E/complications , Hepatitis E/epidemiology , Hepatitis E/diagnosis , Retrospective Studies , Cameroon/epidemiology , Phylogeny , Cross-Sectional Studies , Hepatitis Antibodies/genetics , RNA, Viral/genetics , Jaundice/epidemiology , Jaundice/etiology , Immunoglobulin M/genetics , Genotype , Immunoglobulin G/genetics
8.
Nat Commun ; 15(1): 642, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245524

ABSTRACT

The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.


Subject(s)
Antibodies, Bispecific , Receptors, Tumor Necrosis Factor , Immunoglobulin G/genetics , Protein Engineering
9.
Bioengineered ; 15(1): 2302246, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38214443

ABSTRACT

Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.


Subject(s)
Immunoglobulin G , Receptors, IgG , Immunoglobulin G/genetics , Receptors, IgG/genetics , CD40 Antigens/genetics , CD40 Ligand/genetics , Genetic Engineering
10.
MAbs ; 16(1): 2304282, 2024.
Article in English | MEDLINE | ID: mdl-38269489

ABSTRACT

Subcutaneous injection is the preferred route of administration for many antibody therapeutics for reasons that include its speed and convenience. However, the small volume limit (typically ≤2 mL) for subcutaneous delivery often necessitates antibody formulations at high concentrations (commonly ≥100 mg/mL), which may lead to physicochemical problems. For example, antibodies with large hydrophobic or charged patches can be prone to self-interaction giving rise to high viscosity. Here, we combined X-ray crystallography with computational modeling to predict regions of an anti-glucagon receptor (GCGR) IgG1 antibody prone to self-interaction. An extensive mutational analysis was undertaken of the complementarity-determining region residues residing in hydrophobic surface patches predicted by spatial aggregation propensity, in conjunction with residue-level solvent accessibility, averaged over conformational ensembles from molecular dynamics simulations. Dynamic light scattering (DLS) was used as a medium throughput screen for self-interaction of ~ 200 anti-GCGR IgG1 variants. A negative correlation was found between the viscosity determined at high concentration (180 mg/mL) and the DLS interaction parameter measured at low concentration (2-10 mg/mL). Additionally, anti-GCGR variants were readily identified with reduced viscosity and antigen-binding affinity within a few fold of the parent antibody, with no identified impact on overall developability. The methods described here may be useful in the optimization of other antibodies to facilitate their therapeutic administration at high concentration.


Subject(s)
Antibodies, Monoclonal, Humanized , Complementarity Determining Regions , Viscosity , Molecular Dynamics Simulation , Immunoglobulin G/genetics
11.
Arthritis Res Ther ; 26(1): 26, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38229121

ABSTRACT

BACKGROUND: Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS: By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS: A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION: CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.


Subject(s)
Autoimmune Diseases , Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics , Sjogren's Syndrome/complications , Autoimmune Diseases/complications , Biomarkers , Transcriptome , Immunoglobulin G/genetics , Chemokine CXCL9/genetics , Chemokine CXCL9/therapeutic use
12.
Biochem Biophys Res Commun ; 691: 149326, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38035406

ABSTRACT

Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-ß1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-ß1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-ß1 expression and contributing to reduction of LPS induced IgG2b production.


Subject(s)
ARNTL Transcription Factors , Antibody Formation , CLOCK Proteins , Immunoglobulin G , Sleep Deprivation , Sleep Deprivation/genetics , Sleep Deprivation/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Rats, Sprague-Dawley , Mice, Inbred C57BL , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/immunology , CLOCK Proteins/genetics , CLOCK Proteins/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Antibody Formation/drug effects , Antibody Formation/genetics , Stress, Physiological/immunology , Animals , Mice , Rats , Cells, Cultured
13.
Gene Ther ; 31(1-2): 19-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37500816

ABSTRACT

Adeno-associated virus (AAV) vectors have been successfully used to deliver genes for treating rare diseases. However, the systemic administration of high AAV vector doses triggers several adverse effects, including immune response, the asymptomatic elevation of liver transaminase levels, and complement activation. Thus, improving AAV transduction and reducing AAV dosage for treatment is necessary. Recently, we found that a phosphodiesterase-5 inhibitor significantly promoted AAV9 transduction in vitro by regulating the caveolae and macropinocytosis pathways. When AAV9-Gaussian luciferase (AAV9-Gluc) and AAV9-green fluorescent protein (AAV9-GFP) were injected intravenously into mice pre-treated with sildenafil, the expressions of Gluc in the plasma and GFP in muscle tissues significantly increased (P < 0.05). Sildenafil also improved Evans blue permeation in tissues. Additionally, we found that sildenafil promoted Treg proliferation, inhibited B-cell activation, and decreased anti-AAV9 IgG levels (P < 0.05). Furthermore, sildenafil significantly promoted Duchenne muscular dystrophy gene therapy efficacy using AAV9 in mdx mice; it increased micro-dystrophin gene expression, forelimb grip strength, and time spent on the rotarod test, decreased serum creatine kinase levels, and ameliorated histopathology by improving muscle cell morphology and reducing fibrosis (P < 0.05). These results show that sildenafil significantly improved AAV transduction, suppressed the levels of anti-AAV9 IgG, and enhanced the efficacy of gene therapy.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Mice, Inbred mdx , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Sildenafil Citrate/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Immunoglobulin G/genetics , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/genetics , Muscle, Skeletal/metabolism
14.
Plant Biotechnol J ; 22(5): 1224-1237, 2024 May.
Article in English | MEDLINE | ID: mdl-38050338

ABSTRACT

Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.


Subject(s)
Antibodies, Monoclonal , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Programmed Cell Death 1 Receptor/genetics , B7-H1 Antigen/genetics , Immunoglobulin G/genetics
15.
J Immunol Methods ; 525: 113606, 2024 02.
Article in English | MEDLINE | ID: mdl-38145790

ABSTRACT

Tumor-associated glycoprotein 72 (TAG-72) is a mucin that is overexpressed heterogeneously on the surface of cancer cells, and is a potential target for immunotherapies for various cancer types. As a tumor marker, TAG-72 is measured with the cancer antigen (CA) 72-4 immunoassay. The murine monoclonal antibody (mAb) CC49 is a second-generation IgG that targets an antigen on TAG-72; however, CC49 has an unfavorable propensity to aggregate, which results in antibody impurity, instability, and low solubility and thus low potency and efficacy for therapeutic and diagnostic applications. Sequence analysis of CC49 revealed aggregation-prone motifs in the variable domain of the light chain. Using antibody engineering approaches, we developed three aggregation-resistant CC49 mIgG2a mutants (CC49M1, CC49M2, and CC49M3). The engineered CC49 mIgG2a mutants retained compatible binding performance with a significantly higher thermal stability. The CC49 mIgG2a mutants also demonstrated an almost 15-fold improvement in solubility, with 97% purity vs 70% purity of the parent molecule at 0.3 mg/mL. The enhanced stability and improved solubility of engineered CC49 could have significant advantages for diagnostic and therapeutic applications.


Subject(s)
Antigens, Neoplasm , Glycoproteins , Mice , Animals , Solubility , Antigens, Neoplasm/genetics , Antibodies, Monoclonal , Immunoglobulin G/genetics
16.
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi ; 39(12): 1168-1174, 2023 Dec 20.
Article in Chinese | MEDLINE | ID: mdl-38129304

ABSTRACT

Objective: To explore the expression of endosialin, i.e., CD248 in human hypertrophic scars (HSs) and its regulatory effect on the phenotype of hypertrophic scar fibroblasts (HSFs). Methods: The method of experimental research was used. From March to May, 2023, 3 pediatric patients with HS were admitted to the Department of Burns and Cutaneous Surgery of the First Affiliated Hospital of Air Force Medical University, including 2 females and 1 male, aged one year ten months to two years. The HS tissue resected during the surgery and the remaining full-thickness skin graft, i.e., normal skin tissue after full-thickness skin grafting were collected from the aforementioned pediatric patients for subsequent experiments. Using the aforementioned two types of tissue, the histological structures were observed by hematoxylin-eosin staining, collagen distribution was observed by Masson staining, and the expression of CD248 was observed and measured by immunohistochemical staining. The primary HSFs were isolated from HS tissue using explant culture technique, and the 3rd to 5th passages of HSFs were used in subsequent experiments. According to the random number table, HSFs were divided into immunoglobulin G78 (IgG78)-treated group and IgG control group, which were treated with 200 nmol/L human CD248 monoclonal antibody IgG78 and human IgG control antibody for 24 h, respectively. The mRNA expressions of collagen type Ⅰ (Col Ⅰ) and α-smooth muscle actin (α-SMA) in HSFs were measured by real-time fluorescence quantitative reverse transcription polymerase chain reaction, the protein expressions of Col Ⅰ and α-SMA in HSFs were detected by Western blotting, and the intracellular location and protein expressions of Col Ⅰ and α-SMA were detected by immunofluorescence method. The number of samples in each experiment was 3. Data were statistically analyzed with paired sample t test and independent sample t test. Results: Compared with those in normal skin tissue, the epidermis and dermis in HS tissue were significantly thicker, with massive accumulation and disordered arrangement of collagen in the dermis. The expression of CD248 in HS tissue was significantly upregulated compared with that in normal skin tissue (t=5.29, P<0.05). At post treatment hour 24, the mRNA expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were 0.39±0.05 and 0.56±0.09, respectively, which were significantly lower than 1.00±0.07 and 1.00±0.08 in IgG control group, respectively (with t values of 11.87 and 6.49, respectively, P values all <0.05). The protein expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were 0.617±0.011 and 0.67±0.14, respectively, which were significantly lower than 1.259±0.052 and 1.23±0.16 in IgG control group, respectively (with t values of 20.92 and 4.52, respectively, P values all <0.05). At post treatment hour 24, immunofluorescence staining showed that Col Ⅰ and α-SMA mainly located in the cytoplasm of HSFs in the two groups, and the protein expressions of Col Ⅰ and α-SMA of HSFs in IgG78-treated group were obviously downregulated compared with those in IgG control group. Conclusions: The expression of CD248 is significantly upregulated in human HS. Targeted blockade of CD248 can significantly inhibit the collagen synthesis by HSFs and the transdifferentiation of HSFs into myofibroblasts.


Subject(s)
Cicatrix, Hypertrophic , Female , Humans , Male , Child , Cicatrix, Hypertrophic/pathology , Fibroblasts/metabolism , Collagen/metabolism , RNA, Messenger/genetics , Phenotype , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/pharmacology , Antigens, CD/metabolism , Antigens, CD/pharmacology
17.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38149987

ABSTRACT

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Subject(s)
Galactose , Genome-Wide Association Study , Gene Regulatory Networks , Immunoglobulin G/genetics , Polysaccharides/metabolism
18.
MAbs ; 15(1): 2273449, 2023.
Article in English | MEDLINE | ID: mdl-37930310

ABSTRACT

Bispecific antibodies represent an increasingly large fraction of biologics in therapeutic development due to their expanded scope in functional capabilities. Asymmetric monovalent bispecific IgGs (bsIgGs) have the additional advantage of maintaining a native antibody-like structure, which can provide favorable pharmacology and pharmacokinetic profiles. The production of correctly assembled asymmetric monovalent bsIgGs, however, is a complex engineering endeavor due to the propensity for non-cognate heavy and light chains to mis-pair. Previously, we introduced the DuetMab platform as a general solution for the production of bsIgGs, which utilizes an engineered interchain disulfide bond in one of the CH1-CL domains to promote orthogonal chain pairing between heavy and light chains. While highly effective in promoting cognate heavy and light chain pairing, residual chain mispairing could be detected for specific combinations of Fv pairs. Here, we present enhancements to the DuetMab design that improve chain pairing and production through the introduction of novel electrostatic steering mutations at the CH1-CL interface with lambda light chains (CH1-Cλ). These mutations work together with previously established charge-pair mutations at the CH1-CL interface with kappa light chains (CH1-Cκ) and Fab disulfide engineering to promote cognate heavy and light chain pairing and enable the reliable production of bsIgGs. Importantly, these enhanced DuetMabs do not require engineering of the variable domains and are robust when applied to a panel of bsIgGs with diverse Fv sequences. We present a comprehensive biochemical, biophysical, and functional characterization of the resulting DuetMabs to demonstrate compatibility with industrial production benchmarks. Overall, this enhanced DuetMab platform substantially streamlines process development of these disruptive biotherapeutics.


Subject(s)
Antibodies, Bispecific , Antibodies, Bispecific/genetics , Static Electricity , Disulfides , Mutation , Immunoglobulin G/genetics
19.
Sci Rep ; 13(1): 18916, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919321

ABSTRACT

Proinsulin Like Growth Factor I (prolGF-I) and myostatin (Mstn) regulate muscle regeneration and mass when intravenously delivered. We tested if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too low to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc1 fusion protein (5.45 µg/g GFP-Fc1) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc1 subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc1, with the advantage that the proteins may be stored at room temperature.


Subject(s)
Chloroplasts , Immunoglobulin G , Mice , Animals , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Nicotiana/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
20.
PLoS One ; 18(10): e0290700, 2023.
Article in English | MEDLINE | ID: mdl-37782632

ABSTRACT

Inflammation is a multifaceted marker resulting from complex interactions between genetic and lifestyle factors. Emerging evidence suggests Aryl hydrocarbon receptor (AHR) protein may be implicated in the regulation of immune system and inflammatory responses. To investigate whether rs4410790 genotype (TT, TC, CC) near AHR gene is related to serum IgG levels, a marker of chronic inflammation, and whether lifestyle factors modifies the relationship, we conducted a cross-sectional study by recruiting 168 Korean adults. Participants responded to a lifestyle questionnaire and provided oral epithelial cells and blood samples for biomarker assessment. Among these participants, C allele was the minor allele, with the minor allele frequency of 40%. The rs4410790 TT genotype was significantly associated with elevated IgG levels compared with TC/CC genotypes, after adjusting for potential confounders (p = 0.04). The relationship varied significantly by levels of alcohol consumption (P interaction = 0.046) and overweight/obese status (P interaction = 0.02), but not by smoking status (P interaction = 0.64) and coffee consumption (P interaction = 0.55). Specifically, higher IgG levels associated with the TT genotype were evident in frequent drinkers and individuals with BMI≥23kg/m2, but not in their counterparts. Thus, rs4410790 genotype may be associated with IgG levels and the genetic predisposition to higher IgG levels may be mitigated by healthy lifestyle factors like infrequent drinking and healthy weight.


Subject(s)
Alcohol Drinking , Receptors, Aryl Hydrocarbon , Adult , Humans , Cross-Sectional Studies , Genotype , Immunoglobulin G/genetics , Inflammation/genetics , Life Style , Polymorphism, Single Nucleotide , Receptors, Aryl Hydrocarbon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...