Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.509
Filter
1.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
2.
Front Immunol ; 15: 1361240, 2024.
Article in English | MEDLINE | ID: mdl-38698868

ABSTRACT

N-glycosylation influences the effectiveness of immune globulin G (IgG) and thus the immunological downstream responses of immune cells. This impact arises from the presence of N-glycans within the Fc region, which not only alters the conformation of IgG but also influences its steric hindrance. Consequently, these modifications affect the interaction between IgG and its binding partners within the immune system. Moreover, this posttranslational modification vary according to the physiological condition of each individual. In this study, we examined the N-glycosylation of IgG in pigs from birth to five months of age. Our analysis identified a total of 48 distinct N-glycan structures. Remarkably, we observed defined changes in the composition of these N-glycans during postnatal development. The presence of agalactosylated and sialylated structures increases in relation to the number of N-glycans terminated by galactose residues during the first months of life. This shift may indicate a transition from passively transferred antibodies from the colostrum of the sow to the active production of endogenous IgG by the pig's own immune system.


Subject(s)
Immunoglobulin G , Polysaccharides , Animals , Glycosylation , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Swine , Polysaccharides/metabolism , Polysaccharides/immunology , Protein Processing, Post-Translational , Animals, Newborn , Female
3.
Sci Rep ; 14(1): 8507, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38605071

ABSTRACT

While cellular metabolism was proposed to be a driving factor of the activation and differentiation of B cells and the function of the resulting antibody-secreting cells (ASCs), the study of correlations between cellular metabolism and functionalities has been difficult due to the absence of technologies enabling the parallel measurement. Herein, we performed single-cell transcriptomics and introduced a direct concurrent functional and metabolic flux quantitation of individual murine B cells. Our transcriptomic data identified lactate metabolism as dynamic in ASCs, but antibody secretion did not correlate with lactate secretion rates (LSRs). Instead, our study of all splenic B cells during an immune response linked increased lactate metabolism with acidic intracellular pH and the upregulation of apoptosis. T cell-dependent responses increased LSRs, and added TLR4 agonists affected the magnitude and boosted LSRhigh B cells in vivo, while resulting in only a few immunoglobulin-G secreting cells (IgG-SCs). Therefore, our observations indicated that LSRhigh cells were not differentiating into IgG-SCs, and were rather removed due to apoptosis.


Subject(s)
Antibody-Producing Cells , B-Lymphocytes , Animals , Mice , Apoptosis , Immunoglobulin G/metabolism , Lactates/metabolism
4.
Anal Chem ; 96(16): 6347-6355, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607313

ABSTRACT

The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Glycosylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/analysis , Humans , Polysaccharides/analysis , Polysaccharides/chemistry , Chromatography, Liquid , Pepsin A/metabolism , Pepsin A/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Animals , Membranes, Artificial
5.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637878

ABSTRACT

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Dasatinib , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding
6.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
7.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607033

ABSTRACT

Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.


Subject(s)
Receptors, Fc , Animals , Humans , Mice , Rats , Albumins/metabolism , Endosomes/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/genetics , Receptors, Fc/metabolism , Protein Isoforms
8.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673914

ABSTRACT

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Cell Line, Tumor , Potyvirus , Immunoglobulin G/metabolism , Cetuximab/pharmacology , Cetuximab/chemistry , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism
9.
Sci Immunol ; 9(94): eadk0092, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579014

ABSTRACT

The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Membrane Proteins , Animals , Mice , Germinal Center , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Signal Transduction , Membrane Proteins/metabolism
10.
MAbs ; 16(1): 2339337, 2024.
Article in English | MEDLINE | ID: mdl-38634473

ABSTRACT

Recent development of amyloid-ß (Aß)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal. Here, two antibodies were designed based on the Aß antibody bapineuzumab (Bapi) - one monospecific IgG (Bapi) and one bispecific antibody with an antigen binding fragment (Fab) of the transferrin receptor (TfR) antibody 8D3 fused to one of the heavy chains (Bapi-Fab8D3) for active, TfR-mediated transport into the brain. A variant of each antibody was designed to harbor a mutation to the neonatal Fc receptor (FcRn) binding domain, to increase clearance. Blood and brain pharmacokinetics of radiolabeled antibodies were studied in wildtype (WT) and AD mice (AppNL-G-F). The FcRn mutation substantially reduced blood half-life of both Bapi and Bapi-Fab8D3. Bapi-Fab8D3 showed high brain uptake and the brain-to-blood ratio of its FcRn mutated form was significantly higher in AppNL-G-F mice than in WT mice 12 h after injection and increased further up to 168 h. Ex vivo autoradiography showed specific antibody retention in areas with abundant Aß pathology. Taken together, these results suggest that reducing FcRn binding of a full-sized bispecific antibody increases the systemic elimination and could thereby drastically reduce the time from injection to in vivo imaging.


Subject(s)
Alzheimer Disease , Antibodies, Bispecific , Histocompatibility Antigens Class I , Receptors, Fc , Receptors, Transferrin , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism , Immunoglobulin G/metabolism , Mice, Transgenic , Receptors, Fc/immunology , Receptors, Fc/metabolism , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism
11.
Eur Biophys J ; 53(3): 159-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493432

ABSTRACT

Protein-protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein-protein interactions.


Subject(s)
Amino Acids , Peptides , Humans , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Amino Acids/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Protein Binding , Thermodynamics
12.
J Chromatogr A ; 1720: 464772, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38452560

ABSTRACT

The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Humans , Antibodies, Monoclonal/chemistry , Chromatography, Ion Exchange/methods , Immunoglobulin G/metabolism , Immunoglobulin Fragments , Ligands
13.
Front Immunol ; 15: 1347871, 2024.
Article in English | MEDLINE | ID: mdl-38469305

ABSTRACT

The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.


Subject(s)
Immunoglobulin G , Receptors, IgG , Receptors, IgG/metabolism , Immunoglobulin G/metabolism , Mannose , Benchmarking , Antibodies, Monoclonal/metabolism , Polysaccharides/metabolism , Mass Spectrometry
14.
PLoS One ; 19(3): e0299804, 2024.
Article in English | MEDLINE | ID: mdl-38547072

ABSTRACT

Disulfide constrained peptides (DCPs) show great potential as templates for drug discovery. They are characterized by conserved cysteine residues that form intramolecular disulfide bonds. Taking advantage of phage display technology, we designed and generated twenty-six DCP phage libraries with enriched molecular diversity to enable the discovery of ligands against disease-causing proteins of interest. The libraries were designed based on five DCP scaffolds, namely Momordica charantia 1 (Mch1), gurmarin, Asteropsin-A, antimicrobial peptide-1 (AMP-1), and potato carboxypeptidase inhibitor (CPI). We also report optimized workflows for screening and producing synthetic and recombinant DCPs. Examples of novel DCP binders identified against various protein targets are presented, including human IgG Fc, serum albumin, vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF). We identified DCPs against human IgG Fc and serum albumin with sub-micromolar affinity from primary panning campaigns, providing alternative tools for potential half-life extension of peptides and small protein therapeutics. Overall, the molecular diversity of the DCP scaffolds included in the designed libraries, coupled with their distinct biochemical and biophysical properties, enables efficient and robust identification of de novo binders to drug targets of therapeutic relevance.


Subject(s)
Bacteriophages , Peptide Library , Humans , Vascular Endothelial Growth Factor A/metabolism , Disulfides/metabolism , Peptides/chemistry , Bacteriophages/genetics , Immunoglobulin G/metabolism
15.
Methods Mol Biol ; 2761: 1-26, 2024.
Article in English | MEDLINE | ID: mdl-38427225

ABSTRACT

Detection of merely apoptosis does not reveal the type of central nervous system (CNS) cells that are dying in the CNS diseases and injuries. In situ detection and estimation of amount of apoptosis specifically in neurons or glial cells (astrocytes, oligodendrocytes, and microglia) can unveil valuable information for designing therapeutics for protection of the CNS cells and functional recovery. A method was first developed and reported from our laboratory for in situ detection and estimation of amount of apoptosis precisely in neurons and glial cells using in vitro and in vivo models of CNS diseases and injuries. This is a combination of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and double immunofluorescent labeling (DIFL) or simply TUNEL-n-DIFL method for in situ detection and estimation of amount of apoptosis in a specific CNS cell type. An anti-digoxigenin (DIG) IgG antibody conjugated with 7-amino-4-methylcoumarin-3-acetic acid (AMCA) for blue fluorescence, fluorescein isothiocyanate (FITC) for green fluorescence, or Texas Red (TR) for red fluorescence can be used for in situ detection of apoptotic cell DNA, which is earlier labeled with TUNEL using alkali-stable DIG-11-dUTP. A primary anti-NeuN (neurons), anti-GFAP (astrocytes), anti-MBP (oligodendrocytes), or anti-OX-42 (microglia) IgG antibody and a secondary IgG antibody conjugated with one of the above fluorophores (other than that of ani-DIG antibody) are used for in situ detection of apoptosis in a specific CNS cell type in the mixed culture and animal models of the CNS diseases and injuries.


Subject(s)
Apoptosis , Central Nervous System Diseases , Animals , In Situ Nick-End Labeling , Apoptosis/genetics , Neuroglia , Neurons/metabolism , Central Nervous System Diseases/metabolism , Disease Models, Animal , Immunoglobulin G/metabolism
16.
Front Immunol ; 15: 1329805, 2024.
Article in English | MEDLINE | ID: mdl-38481993

ABSTRACT

mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.


Subject(s)
Influenza Vaccines , Interferon Type I , Humans , Male , Female , Adolescent , Interferon-alpha , Influenza Vaccines/metabolism , Toll-Like Receptor 7/metabolism , Androgens/metabolism , BNT162 Vaccine , mRNA Vaccines , Interferon Type I/metabolism , Vaccination , Dendritic Cells , Immunoglobulin G/metabolism
17.
J Dermatol ; 51(5): 643-648, 2024 May.
Article in English | MEDLINE | ID: mdl-38482975

ABSTRACT

Bullous pemphigoid (BP), an autoimmune subepidermal blistering disease, shows tense blisters associated with urticarial erythema. Tissue-bound Immunoglobulin G (IgG) at the basement membrane zone (BMZ) detected by direct immunofluorescence (DIF) is strong evidence for a diagnosis of BP. The sensitivity of DIF is higher in complement component 3 (C3) than in IgG, but the reason for this different sensitivity is not fully understood. In this study, we performed several ex vivo studies to investigate the possible mechanism of IgG negativity and C3 positivity at the BMZ by DIF in some BP cases. First, sera from BP patients showing IgG negativity by DIF were found to clearly react to the BMZ in their own DIF skin samples. Next, indirect immunofluorescence (IIF) was performed using sera diluted with different pH phosphate-buffered saline (PBS), pH 7.4, 6.0, and 3.0. Patients' sera diluted with pH 7.4 PBS showed linear staining at the BMZ, but sera diluted with pH 6.0 PBS and pH 3.0 PBS showed lower fluorescence intensities. Finally, sections of skin from BP patients were pre-incubated with different pH PBS (pH 3.0, 6.0, and 7.4), followed by staining with anti-human IgG and C3. The fluorescence intensities were notably lower for IgG and C3 that had been pre-incubated with pH 3.0 PBS and pH 6.0 PBS than for IgG and C3 that had been pre-incubated with pH 7.4 PBS. These results suggest that a low pH condition hinders the binding of autoantibodies to the BMZ, that is, the drop in tissue pH induced by inflammation inhibits autoantibodies from depositing at the BMZ. Furthermore, the drop in tissue pH causes tissue-bound autoantibodies to detach from the BMZ. Complement fragments are activated not only on IgG but also on the cell surface of cells close to IgG during complement activation. IgG may detach from the BMZ under low pH condition induced by inflammation, but some complement fragments remain at the BMZ. These phenomena may help to explain why C3 is more sensitive than IgG when DIF is used to diagnose BP.


Subject(s)
Basement Membrane , Complement C3 , Immunoglobulin G , Pemphigoid, Bullous , Humans , Basement Membrane/immunology , Basement Membrane/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Hydrogen-Ion Concentration , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/diagnosis , Pemphigoid, Bullous/pathology , Complement C3/immunology , Complement C3/metabolism , Male , Female , Aged , Autoantibodies/immunology , Autoantibodies/blood , Fluorescent Antibody Technique, Direct , Skin/immunology , Skin/pathology , Fluorescent Antibody Technique, Indirect , Aged, 80 and over , Middle Aged
18.
Sci Rep ; 14(1): 3146, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326464

ABSTRACT

Proinflammatory cytokines, such as (IL: interleukin) IL-6 and IL-17A, and complement fixation are critical in the immunopathogenesis of neuromyelitis optica spectrum disorders (NMOSD). Blocking the IL-6 receptor or the C5 complement pathway reduces relapse risk. However, the role of interleukin (IL)-6 and complement in aquaporin-4 (AQP4) autoimmunity remains unclear. To investigate the role of the anti-AQP4 immunoglobulin (AQP4-IgG)/AQP4 immunocomplex on the induction and profile of ex vivo cytokine and surface marker expression in peripheral blood mononuclear cells (PBMC) culture. Isolated PBMCs obtained from 18 patients with AQP4-IgG-seropositive-NMOSD (8 treatment-naive, 10 rituximab-treated) or ten healthy controls were cultured with AQP4-immunocomplex with or without complement. Changes in PBMC surface markers and cytokine expression were profiled using flow cytometry and ELISA. PBMCs derived from treatment-naive NMOSD patients stimulated with a complex mixture of serum complement proteins produced significant elevations of IL-17A and IL-6. Rituximab-treated patients also exhibited higher IL-6 but not IL-17A release. IL-6 and IL-17A elevations are not observed without complement. Co-stimulation of PBMCs with AQP4-IgG/AQP4 immunocomplex and complement prompts a Th17-biased response consistent with the inflammatory paradigm observed in NMOSD. A possible inflammation model is proposed via antigen-specific autoreactive peripheral blood cells, including NK/NKT cells.


Subject(s)
Neuromyelitis Optica , Humans , Cytokines/metabolism , Antigen-Antibody Complex/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use , Rituximab/metabolism , Autoantibodies , Aquaporin 4 , Complement System Proteins/metabolism , Immunoglobulin G/metabolism
19.
J Alzheimers Dis ; 98(1): 163-186, 2024.
Article in English | MEDLINE | ID: mdl-38393907

ABSTRACT

Background: Increased blood-brain barrier (BBB) permeability and amyloid-ß (Aß) peptides (especially Aß1-42) (Aß42) have been linked to Alzheimer's disease (AD) pathogenesis, but the nature of their involvement in AD-related neuropathological changes leading to cognitive changes remains poorly understood. Objective: To test the hypothesis that chronic extravasation of bloodborne Aß42 peptide and brain-reactive autoantibodies and their entry into the brain parenchyma via a permeable BBB contribute to AD-related pathological changes and cognitive changes in a mouse model. Methods: The BBB was rendered chronically permeable through repeated injections of Pertussis toxin (PT), and soluble monomeric, fluorescein isothiocyanate (FITC)-labeled or unlabeled Aß42 was injected into the tail-vein of 10-month-old male CD1 mice at designated intervals spanning ∼3 months. Acquisition of learned behaviors and long-term retention were assessed via a battery of cognitive and behavioral tests and linked to neuropathological changes. Results: Mice injected with both PT and Aß42 demonstrated a preferential deficit in the capacity for long-term retention and an increased susceptibility to interference in selective attention compared to mice exposed to PT or saline only. Immunohistochemical analyses revealed increased BBB permeability and entry of bloodborne Aß42 and immunoglobulin G (IgG) into the brain parenchyma, selective neuronal binding of IgG and neuronal accumulation of Aß42 in animals injected with both PT and Aß42 compared to controls. Conclusion: Results highlight the potential synergistic role of BBB compromise and the influx of bloodborne Aß42 into the brain in both the initiation and progression of neuropathologic and cognitive changes associated with AD.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Male , Mice , Animals , Blood-Brain Barrier/metabolism , Alzheimer Disease/pathology , Peptide Fragments/toxicity , Peptide Fragments/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Cognition , Immunoglobulin G/metabolism
20.
J Pediatr Surg ; 59(5): 847-853, 2024 May.
Article in English | MEDLINE | ID: mdl-38413261

ABSTRACT

BACKGROUND: Fetoscopic endoluminal tracheal occlusion (FETO) improves the survival rate in fetuses with severe congenital diaphragmatic hernia (CDH). We hypothesize that prenatal therapies into the trachea during FETO can further improve outcomes. Here, we present an ex vivo microinjection technique with rat lung explants to study prenatal therapy with nanoparticles. METHODS: We used microsurgery to isolate lungs from rats on embryonic day 18. We injected chitosan nanoparticles loaded with fluorescein (FITC) into the trachea of the lung explants. We compared the difference in biodistribution of two types of nanoparticles, functionalized IgG-conjugated nanoparticles (IgG-nanoparticles) and bare nanoparticles after 24 h culture with immunofluorescence (IF). We used IF to mark lung epithelial cells with E-cadherin and to investigate an apoptosis (Active-caspase 3) and inflammatory marker (Interleukin, IL-6) and compared its abundance between the two experimental groups and control lung explants. RESULTS: We detected the presence of nanoparticles in the lung explants, and the relative number of nanoparticles to cells was 2.49 fold higher in IgG-nanoparticles than bare nanoparticles (p < 0.001). Active caspase-3 protein abundance was similar in the control, bare nanoparticles (1.20 fold higher), and IgG-nanoparticles (1.34 fold higher) groups (p = 0.34). Similarly, IL-6 protein abundance was not different in the control, bare nanoparticles (1.13 fold higher), and IgG-nanoparticles (1.12 fold higher) groups (p = 0.33). CONCLUSIONS: Functionalized nanoparticles had a higher presence in lung cells and this did not result in more apoptosis or inflammation. Our proof-of-principle study will guide future research with therapies to improve lung development prenatally. LEVELS OF EVIDENCE: N/A TYPE OF STUDY: Animal and laboratory study.


Subject(s)
Hernias, Diaphragmatic, Congenital , Pregnancy , Female , Animals , Rats , Hernias, Diaphragmatic, Congenital/surgery , Hernias, Diaphragmatic, Congenital/metabolism , Pilot Projects , Interleukin-6/metabolism , Microinjections , Tissue Distribution , Lung/abnormalities , Fetoscopy/methods , Trachea/surgery , Immunoglobulin G/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...