Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 991
Filter
1.
Int Immunopharmacol ; 133: 112087, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669951

ABSTRACT

EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.


Subject(s)
Calcium-Binding Proteins , Cell Differentiation , Lymphocyte Activation , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell , Sepsis , Signal Transduction , Animals , Sepsis/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Lymphocyte Activation/immunology , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Th17 Cells/immunology , Cells, Cultured , T-Lymphocytes, Helper-Inducer/immunology , Macrophages/immunology , Th1 Cells/immunology , Male , Immunological Synapses/metabolism , Immunological Synapses/immunology
3.
Cancer Immunol Res ; 12(5): 515, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557780

ABSTRACT

The pivotal role of T cell responses has been well studied in both protective and destructive scenarios. T cells recognize peptide epitopes presented on Human Leukocyte Antigens (HLA) through their surface T cell receptors (TCR). Advances in single-cell RNA sequencing have identified millions of TCRs, but only a minuscule fraction of them have known epitopes. Recently, cell-based T cell antigen discovery platforms have emerged onto the landscape. Here, Jin and colleagues, report a novel antigen discovery platform called Tsyn-seq that relies on sequencing TCR-peptide-HLA-induced synapses for genome-wide epitope screening. See related article by Jin et al., p. 530 (3).


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Immunological Synapses/immunology , HLA Antigens/genetics , HLA Antigens/immunology , High-Throughput Nucleotide Sequencing
4.
Curr Pharm Des ; 30(7): 536-551, 2024.
Article in English | MEDLINE | ID: mdl-38343058

ABSTRACT

BACKGROUND: Co-signaling and adhesion molecules are important elements for creating immune synapses between T lymphocytes and antigen-presenting cells; they positively or negatively regulate the interaction between a T cell receptor with its cognate antigen, presented by the major histocompatibility complex. OBJECTIVES: We conducted a systematic review on the effects of High Efficacy Disease Modifying Drugs (HEDMDs) for Multiple Sclerosis (MS) on the co-signaling and adhesion molecules that form the immune synapse. METHODS: We searched EMBASE, MEDLINE, and other sources to identify clinical or preclinical reports on the effects of HEDMDs on co-signaling and adhesion molecules that participate in the formation of immune synapses in patients with MS or other autoimmune disorders. We included reports on cladribine tablets, anti- CD20 monoclonal antibodies, S1P modulators, inhibitors of Bruton's Tyrosine Kinase, and natalizumab. RESULTS: In 56 eligible reports among 7340 total publications, limited relevant evidence was uncovered. Not all co-signaling and adhesion molecules have been studied in relation to every HEDMD, with more data being available on the anti-CD20 monoclonal antibodies (that affect CD80, CD86, GITR and TIGIT), cladribine tablets (affecting CD28, CD40, ICAM-1, LFA-1) and the S1P modulators (affecting CD86, ICAM-1 and LFA-1) and less on Natalizumab (affecting CD80, CD86, CD40, LFA-1, VLA-4) and Alemtuzumab (affecting GITR and CTLA-4). CONCLUSION: The puzzle of HEDMD effects on the immune synapse is far from complete. The available evidence suggests that distinguishing differences exist between drugs and are worth pursuing further.


Subject(s)
Multiple Sclerosis , Animals , Humans , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunological Synapses/drug effects , Immunological Synapses/immunology , Immunological Synapses/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology
5.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38363296

ABSTRACT

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Subject(s)
Immunological Synapses , Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Gene Library , High-Throughput Nucleotide Sequencing , Human papillomavirus 16/immunology , Human papillomavirus 16/genetics , Immunological Synapses/immunology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
6.
Nat Commun ; 14(1): 7888, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036503

ABSTRACT

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.


Subject(s)
Cell Communication , Immunological Synapses , Humans , Workflow , Machine Learning
7.
Sci Signal ; 16(813): eadl3956, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38015912

ABSTRACT

Programmed cell death molecule 1 (PD-1) is a negative regulator of T cell activation; however, the mechanisms by which it acts are unclear. In this issue of Science Signaling, Paillon et al. show that PD-1 inhibits actin cytoskeletal rearrangements and associated effector responses in cytotoxic T cells.


Subject(s)
Actins , Programmed Cell Death 1 Receptor , Actins/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Immunological Synapses , Actin Cytoskeleton/metabolism , Cytoskeleton , Lymphocyte Activation
8.
Sci Signal ; 16(813): eadh2456, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38015913

ABSTRACT

Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.


Subject(s)
Actins , Immunological Synapses , Humans , Actins/metabolism , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction , Lymphocyte Activation
9.
Front Immunol ; 14: 1276602, 2023.
Article in English | MEDLINE | ID: mdl-37869010

ABSTRACT

Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.


Subject(s)
Actins , Neoplasms , Immunological Synapses , Actin Cytoskeleton , Cytoskeleton , Killer Cells, Natural , Neoplasms/therapy
11.
J Immunol ; 211(9): 1385-1396, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37695687

ABSTRACT

Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Humans , CD4-Positive T-Lymphocytes , Glycolipids/metabolism , Immunological Synapses , Interleukin-2/metabolism , Macrophages/microbiology
12.
Eur J Immunol ; 53(11): e2350393, 2023 11.
Article in English | MEDLINE | ID: mdl-37598303

ABSTRACT

Dendritic cells (DCs) bridge innate and adaptive immunity. Their main function is to present antigens to prime T cells and initiate and shape adaptive responses. Antigen presentation takes place through intimate contacts between the two cells, termed immune synapses (IS). During the formation of IS, information travels towards the T-cell side to induce and tune its activation; but it also travels in reverse via engagement of membrane receptors and within extracellular vesicles transferred to the DC. Such reverse information transfer and its consequences on DC fate have been largely neglected. Here, we review the events and effects of IS-mediated antigen presentation on DCs. In addition, we discuss novel technological advancements that enable monitoring DCs interactions with T lymphocytes, the main effects of DCs undergoing productive IS (postsynaptic DCs, or psDCs), and how reverse information transfer could be harnessed to modulate immune responses for therapeutic intervention.


Subject(s)
Dendritic Cells , Immunological Synapses , T-Lymphocytes , Antigen Presentation , Antigens
13.
Front Immunol ; 14: 1197289, 2023.
Article in English | MEDLINE | ID: mdl-37520527

ABSTRACT

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Subject(s)
CD4-Positive T-Lymphocytes , Microtubule-Associated Proteins , Mitochondria , Jurkat Cells , Humans , Microtubule-Associated Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mitochondria/metabolism , Tubulin/metabolism , Cytoskeleton/metabolism , Receptors, Antigen, T-Cell/metabolism , CD28 Antigens/metabolism , Membrane Potential, Mitochondrial , Immunological Synapses
14.
Methods Cell Biol ; 178: 1-12, 2023.
Article in English | MEDLINE | ID: mdl-37516519

ABSTRACT

The immunological synapse (IS) between NK cells and cancer cells is instrumental for the initiation of tumor-specific cytotoxicity. Improper function of processes at the IS can lead to NK cell unresponsiveness, contributing to tumor immune escape. Critical steps at the IS include target cell recognition, conjugation of NK cell and cancer cell, cytotoxic granule convergence to the microtubule-organizing center (MTOC), granule polarization to the IS, and degranulation. Here, we describe confocal live-cell imaging methods for the analysis of these processes at the immunological synapse, with a focus on mechanisms of cancer cell resistance facilitating escape from NK cell cytotoxicity.


Subject(s)
Immunological Synapses , Killer Cells, Natural , Cytoplasmic Granules , Microtubule-Organizing Center
15.
Methods Cell Biol ; 178: 107-120, 2023.
Article in English | MEDLINE | ID: mdl-37516520

ABSTRACT

Immunological synapses (IS) are the privileged site of complex information transfer between T cells and antigen presenting cells. IS are highly structured in terms of actin and tubulin cytoskeleton organization, receptor and proximal signal patterning, and intracellular organelle polarization. The magnitude and quality of T cell responses upon antigen recognition is dependent on IS molecular organization. For that reason, methods to precisely assess IS parameters are crucial to monitor T cell activation and function in health and disease, but also for T cell centered therapeutic intervention. Confocal and super-resolution microscopy approaches have allowed to characterize the complex structure of the T cell IS. However, those approaches suffer from a low-throughput and low-content format precluding multi-parametric classification of IS across large numbers of samples or stimulatory conditions. Here, we present a protocol of high-content confocal cell imaging in a 384-well plate format adapted to the unbiased analysis of primary T cells forming IS over pre-coated stimulatory molecules. The protocol focuses on the staining of F-actin, pericentrin and granzyme B in CD8+ T cells, but is transposable to other IS molecular markers and lymphocyte subsets. We discuss potential applications offered by the multi-parametric characterization of T cell IS in a high-throughput format.


Subject(s)
CD8-Positive T-Lymphocytes , Immunological Synapses , Humans , Immunological Synapses/physiology , Benchmarking , Antigen-Presenting Cells , Actin Cytoskeleton , Actins , Lymphocyte Activation
16.
Methods Cell Biol ; 178: 135-147, 2023.
Article in English | MEDLINE | ID: mdl-37516523

ABSTRACT

The humoral immune response is dependent on B cell activation and differentiation, which is typically triggered by the formation of immunological synapses at the interface between B cells and the antigen presenting surfaces. However, due to the highly dynamic and transient feature of immunological synapses, it has been difficult to capture and investigate the molecular events that occur within them. The planar lipids bilayer (PLB) supported antigen presenting surface combined with high-resolution high-speed total internal reflection fluorescence microscope (TIRFM) live cell imaging system has been proved to be a powerful tool that allows us to visualize the dynamic events in immunological synapse. In addition, the phospholipid phosphatidylinositol-(4,5)-biphosphate (PIP2) plays a unique role in B cell activation, and it is difficult to investigate the synaptic dynamics of PIP2 molecules. Hence, we describe here the general procedures for the utilization of a PLB based antigen presenting system combining TIRFM based imaging methods to visualize the spatial-temporal co-distribution of PIP2 and BCR microcluster within the B cell immunological synapse.


Subject(s)
Immunological Synapses , Receptors, Antigen, B-Cell , Immunological Synapses/metabolism , Receptors, Antigen, B-Cell/metabolism , B-Lymphocytes/metabolism , Lymphocyte Activation
17.
Methods Cell Biol ; 178: 149-171, 2023.
Article in English | MEDLINE | ID: mdl-37516524

ABSTRACT

T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.


Subject(s)
Immunological Synapses , T-Lymphocytes , Humans , Animals , Mice , T-Lymphocytes/metabolism , Immunological Synapses/metabolism , Kinetics , Antigen-Presenting Cells/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells
18.
Methods Cell Biol ; 178: 173-193, 2023.
Article in English | MEDLINE | ID: mdl-37516525

ABSTRACT

Cell-to-cell communication is necessary to orchestrate effective immune responses against disease-causing agents and in homeostasis. During immune synapsis, transfer of small extracellular vesicles that contain bioactive molecules, including microRNAs, occurs from the T lymphocyte to the antigen-presenting cell. In this chapter, we describe the methodology to identify and validate specific microRNAs shuttled from T lymphocytes to B cells upon immune synapse formation, and to analyze their functional impact on post-synaptic antigen-presenting cells.


Subject(s)
Extracellular Vesicles , MicroRNAs , MicroRNAs/genetics , Immunological Synapses/physiology , T-Lymphocytes , Antigen-Presenting Cells , Cell Communication/genetics , Extracellular Vesicles/genetics , Lymphocyte Activation/physiology
19.
Methods Cell Biol ; 178: 93-106, 2023.
Article in English | MEDLINE | ID: mdl-37516530

ABSTRACT

Cytotoxic lymphocytes, such as natural killer (NK) cells and cytotoxic T cells, can recognize and kill tumor cells by establishing a highly specialized cell-cell contact called the immunological synapse. The formation and lytic activity of the immunological synapse are accompanied by local changes in the organization, dynamics and molecular composition of the cell membrane, as well as the polarization of various cellular components, such as the cytoskeleton, vesicles and organelles. Characterization and understanding of the molecular and cellular processes underlying immunological synapse formation and activity requires the combination of complementary types of information provided by different imaging modalities, the correlation of which can be difficult. Correlative light and electron microscopy (CLEM) allows for the accurate correlation of functional information provided by fluorescent light microscopy with ultrastructural features provided by high-resolution electron microscopy. In this chapter, we present a detailed protocol describing each step to generate cell-cell conjugates between NK cells and cancer cells, and to analyze these conjugates by CLEM using separate confocal laser-scanning and transmission electron microscopes.


Subject(s)
Immunological Synapses , Neoplasms , Immunological Synapses/metabolism , Immunological Synapses/ultrastructure , Electrons , Killer Cells, Natural/metabolism , Cytoskeleton/metabolism , Microscopy, Electron , Neoplasms/metabolism
20.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37490053

ABSTRACT

Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.


Subject(s)
Immunological Synapses , T-Lymphocytes , Humans , Immunotherapy , Population Dynamics , Adaptor Proteins, Signal Transducing
SELECTION OF CITATIONS
SEARCH DETAIL
...