Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 560
Filter
1.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315730

ABSTRACT

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Intermediate Filaments , Humans , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Cytoskeleton/genetics , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
2.
Biotechnol Bioeng ; 121(2): 535-550, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37927002

ABSTRACT

A new platform has been developed to facilitate the production of biologically active proteins and peptides in Escherichia coli. The platform includes an N-terminal self-associating L6 KD peptide fused to the SUMO protein (small ubiquitin-like protein modifier) from the yeast Saccharomyces cerevisiae, which is known for its chaperone activity. The target proteins are fused at the C termini of the L6 KD-SUMO fusions, and the resulting three-component fusion proteins are synthesized and self-assembled in E. coli into so-called active inclusion bodies (AIBs). In vivo, the L6 KD-SUMO platform facilitates the correct folding of the target proteins and directs them into AIBs, greatly simplifying their purification. In vitro, the platform facilitates the effective separation of AIBs by centrifugation and subsequent target protein release using SUMO-specific protease. The properties of the AIBs were determined using five proteins with different sizes, folding efficiencies, quaternary structure, and disulfide modifications. Electron microscopy shows that AIBs are synthesized in the form of complex fibrillar structures resembling "loofah sponges" with unusually thick filaments. The obtained results indicate that the new platform has promising features and could be developed to facilitate the synthesis and purification of target proteins and protein complexes without the use of renaturation.


Subject(s)
Escherichia coli , Peptides , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/metabolism , Protein Folding , Endopeptidases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
3.
Protein Expr Purif ; 211: 106328, 2023 11.
Article in English | MEDLINE | ID: mdl-37392905

ABSTRACT

High yield purification of Ulp1 is required during the isolation and purification of SUMO-tagged recombinant proteins. However, when expressed as a soluble protein, Ulp1 is toxic to E. coli host cells and most of the protein forms inclusion bodies. The extraction of insoluble Ulp1 followed by its purification and refolding into its active form is a lengthy and costly procedure. In our present study, we developed a simple, cost effective procedure for the large scale production of active Ulp1 that can be used for industrial scale requirements.


Subject(s)
Escherichia coli , Peptide Hydrolases , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Peptide Hydrolases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
4.
Arkh Patol ; 84(6): 61-66, 2022.
Article in Russian | MEDLINE | ID: mdl-36469720

ABSTRACT

Lafora disease is a rare hereditary genetic pathology of the nervous system (a group of progressive myoclonic epilepsies). The distinctive morphological feature of this disease is the presence of specific abnormal structures - polyglucosane bodies («Lafora bodies¼) in the brain tissue, myocardium, liver, and epithelium of the sweat gland ducts. The article discusses the clinical data of the course of Lafora's disease in an 18-year-old patient with a fatal outcome and the results of a post-mortem examination. The diagnosis of Lafora disease was confirmed by genetic analysis data - the presence of a homozygous mutation in the 2nd exon of the EPM2A gene - laforin (chr6:146007412G>A, rs137852915). When analyzing literature, we did not find a description of Lafora's disease cases with a fatal outcome with the presentation of macroscopic examination data at autopsy, as well as the results of a pathohistological examination of altered organ tissues with the morphological manifestations specific for this pathology (Lafora bodies in the the brain, heart, sweat gland epithelium).


Subject(s)
Lafora Disease , Humans , Adolescent , Lafora Disease/diagnosis , Lafora Disease/genetics , Lafora Disease/pathology , Fatal Outcome , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Inclusion Bodies/genetics , Inclusion Bodies/pathology , Mutation
5.
Seizure ; 103: 137-147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36417830

ABSTRACT

BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB), a rare neurogenetic disease, is characterized by progressive cognitive decline and myoclonus and caused by pathogenic variants of the SERPINI1 gene that lead to the formation of neuroserpin inclusion bodies. METHODS: We described the case of an Asian patient with FENIB associated with a pathogenic variant of SERPINI1 and summarized and analyzed the clinical characteristics of the case. In addition, we conducted a literature review of previously reported patients with this disease. RESULTS: The patient, a 16-year-old Chinese girl, presented with progressive cognitive decline and myoclonus that had started at the age of 11 years. The girl was found to carry a de novo heterozygous c.1175G>A (p.G392E) variant of the SERPINI1 gene, which is a pathogenic variant according to the guidelines of the American College of Medical Genetics and Genomics. She had responded poorly to antiseizure medications (ASMs). At the last follow-up, her myoclonus was still out of control, and her self-care ability was poor. Our literature review revealed that 13 similar cases (including 9 cases in male patients) have been reported so far, in which six pathogenetic variations in SERPINI1, including G392E, were responsible for FENIB. All the patients presented with myoclonus, and 12 patients had experienced at least one other type of seizure. Further, as observed in our case, 9 out of 12 patients did not respond to ASMs. Progressive cognitive decline was observed in all the patients, and 10 out of 13 patients had dyskinesia. The median age of disease onset was 21 years, and the median age at the time of death was 33 years. Further, 9 out of 13 patients showed signs of cerebral and/or cerebellar atrophy. Finally, neuroserpin inclusion bodies were identified in six patients who underwent brain biopsy or autopsy. CONCLUSIONS: Pathogenic variants of SERPINI1 should be suspected in children with progressive cognitive decline and myoclonus, especially in those with progressive myoclonus epilepsy. Further, gene detection and brain biopsy are important means for the diagnosis of FENIB.


Subject(s)
Brain Diseases , Myoclonus , Serpins , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Inclusion Bodies/genetics , Inclusion Bodies/pathology , Myoclonus/genetics , Serpins/genetics , Neuroserpin
6.
mBio ; 12(6): e0239721, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34903051

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways. IMPORTANCE Chlamydia trachomatis is a major cause of human disease worldwide. The ability of Chlamydia to establish infection and cause disease depends on the maintenance of its parasitic niche, called the inclusion. To accomplish this feat, Chlamydia reorganizes host actin and microtubules around the inclusion membrane. How Chlamydia orchestrates these complex processes, however, is largely unknown. Here, we discovered that the chlamydial effector InaC activates Ras homolog family member A (RhoA) to control the formation of actin scaffolds around the inclusion, an event that is critical for inclusion stability. Furthermore, InaC directs the kinetics of actin and posttranslationally modified microtubule scaffolds by mediating cross talk between the GTPases that control these cytoskeletal elements, RhoA and ADP-ribosylation factor 1 (ARF1). The precise timing of these events is essential for the maintenance of the inclusion. Overall, this study provides the first evidence of ARF1-RhoA-mediated cross talk by a bacterial pathogen to coopt the host cytoskeleton.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Chlamydia Infections/metabolism , Chlamydia trachomatis/physiology , Cytoskeleton/microbiology , rhoA GTP-Binding Protein/metabolism , ADP-Ribosylation Factor 1/genetics , Actins/genetics , Actins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , Cytoskeleton/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/microbiology , Protein Binding , Virulence , rhoA GTP-Binding Protein/genetics
7.
mBio ; 12(5): e0229921, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34544283

ABSTRACT

The intracellular cholesterol transport protein Niemann-Pick type C1 (NPC1) and lipid-raft protein flotillin (FLOT) are required for cholesterol uptake by the obligatory intracellular bacterium Anaplasma phagocytophilum and for infection, and each protein localizes to membrane-bound inclusions containing replicating bacteria. Here, we found striking localization of FLOT2 in NPC1-lined vesicles and a physical interaction between FLOT2 and NPC1. This interaction was cholesterol dependent, as a CRAC (cholesterol recognition/interaction amino acid cholesterol-binding) domain mutant of FLOT2 did not interact with NPC1, and the cholesterol-sequestering agent methyl-ß-cyclodextrin reduced the interaction. The stomatin-prohibitin-flotillin-HflC/K domain of FLOT2, FLOT21-183, was sufficient for the unique FLOT2 localization and interaction with NPC1. NPC1, FLOT2, and FLOT21-183 trafficked to the lumen of Anaplasma inclusions. A loss-of-function mutant, NPC1P691S (mutation in the sterol-sensing domain), did not colocalize or interact with FLOT2 or with Anaplasma inclusions and inhibited infection. Ezetimibe is a drug that blocks cholesterol absorption in the small intestine by inhibiting plasma membrane Niemann-Pick C1-like 1 interaction with FLOTs. Ezetimibe blocked the interaction between NPC1 and FLOT2 and inhibited Anaplasma infection. Ezetimibe did not directly inhibit Anaplasma proliferation but inhibited host membrane lipid and cholesterol traffic to the bacteria in the inclusion. These data suggest that Anaplasma hijacks NPC1 vesicles containing cholesterol bound to FLOT2 to deliver cholesterol into Anaplasma inclusions to assimilate cholesterol for its proliferation. These results provide insights into mechanisms of intracellular cholesterol transport and a potential approach to inhibit Anaplasma infection by blocking cholesterol delivery into the lumen of bacterial inclusions. IMPORTANCE Cholesterol influences membrane fluidity and forms membrane microdomains called lipid rafts that serve as organizing centers for the assembly of signaling molecules. Flotillin (FLOT) is a cholesterol-binding lipid-raft protein. The cholesterol-binding membrane glycoprotein Niemann-Pick type C1 (NPC1) is critical for managing cellular cholesterol level and its intracellular transport, and mutation of the gene encoding NPC1 causes the fatal cholesterol storage disease, Niemann-Pick disease, type C. Both FLOT and NPC1 are trafficked to inclusions created by the cholesterol-dependent bacterium Anaplasma phagocytophilum and required for cholesterol uptake by this bacterium for replication. Our novel findings that FLOT2 interacts physically with NPC1 and resides inside both bacterial inclusions and NPC1-containing vesicles underscore the important role for FLOT2 in infection, the intracellular transport of cholesterol in NPC1 vesicles, and cholesterol homeostasis. Both NPC1-FLOT2 interaction and A. phagocytophilum infection can be inhibited by ezetimibe, suggesting possible pharmacological intervention of intracellular cholesterol hijacking by Anaplasma.


Subject(s)
Anaplasma phagocytophilum/growth & development , Anaplasma phagocytophilum/metabolism , Cholesterol/metabolism , Ehrlichiosis/microbiology , Ezetimibe/pharmacology , Membrane Proteins/metabolism , Niemann-Pick C1 Protein/metabolism , Anaplasma phagocytophilum/drug effects , Anaplasma phagocytophilum/genetics , Biological Transport , Cell Membrane/drug effects , Cell Membrane/genetics , Cell Membrane/metabolism , Ehrlichiosis/genetics , Ehrlichiosis/metabolism , Host-Pathogen Interactions , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/microbiology , Membrane Proteins/genetics , Niemann-Pick C1 Protein/genetics , Protein Binding , Protein Transport
8.
Int J Biol Macromol ; 188: 169-179, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34364940

ABSTRACT

The Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) has recently shown great promise to be developed as a vaccine candidate to prevent blood-stage malaria. However, because of its molecular complexity, most previous efforts were focused on expressing PfRH5 in its native and soluble form. Here, we describe the E. coli expression of full-length PfRH5 as inclusion bodies (IBs), followed by its high cell density fermentation at 1, 5 and 30 L scale. Denatured full-length PfRH5 was purified using a two-step chromatography process before being refolded using design of experiments (DoE). Refolded PfRH5 was further purified using size exclusion chromatography (SEC), recovering high purity antigen with an overall yield of 102 mg/L from fermentation cell harvest. Purified PfRH5 was further characterized using orthogonal analytical methods, and a short-term stability study revealed -80 °C as an optimum storage temperature. Moreover, refolded, and purified PfRH5, when formulated with adjuvant Glucopyranosyl A lipid stable emulsion (GLA-SE), elicited high antibody titers in BALB/c mice, proving its potential to neutralize the blood-stage malarial parasite. Here, we establish an E. coli-based process platform for the large-scale cGMP production of full-length PfRH5, enabling global malaria vaccine development efforts.


Subject(s)
Carrier Proteins/genetics , Inclusion Bodies/genetics , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Animals , Carrier Proteins/biosynthesis , Carrier Proteins/immunology , Escherichia coli/genetics , Humans , Inclusion Bodies/immunology , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mice , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Vaccine Development
9.
Clin Neurol Neurosurg ; 207: 106795, 2021 08.
Article in English | MEDLINE | ID: mdl-34273663

ABSTRACT

Reducing body myopathy (RBM) is a rare muscle disorder, with marked presence of characteristic intracytoplasmic aggregates in affected muscle fibers. RBM is associated with FHL1 gene mutations. Clinical presentations of RBM have ranged from early fatal to adult onset progressive muscle weakness. We present herein the clinical, electrodiagnostic, and muscle biopsy findings of a 17-year-old female with progressive muscle weakness and contracture. Muscle biopsy showed atrophic fibers that contained menadione nitroblue tetrazolium (NBT) positive reducing bodies. Genetic testing revealed a variant of uncertain significance in the FHL1 gene at a position known to be pathogenic when substituted by other amino acids (p.His123Arg). This variant was later reclassified as pathogenic.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Muscular Diseases/genetics , Muscular Diseases/pathology , Adolescent , Female , Humans , Inclusion Bodies/genetics , Inclusion Bodies/pathology , Mutation
10.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203222

ABSTRACT

The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.


Subject(s)
Bacterial Proteins/chemistry , Green Fluorescent Proteins/chemistry , Inclusion Bodies/chemistry , Phospholipases A1/chemistry , Recombinant Fusion Proteins/chemistry , Yersinia pseudotuberculosis/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Phospholipases A1/biosynthesis , Phospholipases A1/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Yersinia pseudotuberculosis/enzymology
11.
Int J Biol Macromol ; 186: 414-423, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34246679

ABSTRACT

Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.


Subject(s)
Acyltransferases/metabolism , Betaproteobacteria/enzymology , Inclusion Bodies/enzymology , Polyhydroxyalkanoates/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Betaproteobacteria/genetics , Betaproteobacteria/ultrastructure , Binding Sites , Catalytic Domain , Enzyme Stability , Inclusion Bodies/genetics , Inclusion Bodies/ultrastructure , Protein Domains , Protein Multimerization , Structure-Activity Relationship , Substrate Specificity
12.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065232

ABSTRACT

Tau protein is largely responsible for tauopathies, including Alzheimer's disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3ß, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3ß in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3ß activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3ß.


Subject(s)
Down-Regulation/genetics , Exons/genetics , Glycogen Synthase Kinase 3 beta/genetics , Prions/genetics , tau Proteins/genetics , Adult , Aged , Aged, 80 and over , Alternative Splicing/genetics , Alzheimer Disease/genetics , Animals , Brain/pathology , Disease Models, Animal , Female , Humans , Inclusion Bodies/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neurons/pathology , Protein Isoforms/genetics , RNA, Messenger/genetics , Tauopathies/genetics
13.
Protein Expr Purif ; 184: 105878, 2021 08.
Article in English | MEDLINE | ID: mdl-33812004

ABSTRACT

Smad8 is a transcriptional regulator that participates in the intracellular signaling pathway of the transforming growth factor-ß (TGF-ß) family. Full-length Smad8 is an inactive protein in the absence of ligand stimulation. The expression of a truncated version of the protein lacking the MH1 domain (cSmad8) revealed constitutive activity in genetically engineered mesenchymal stem cells and, in combination with BMP-2, exhibited a tendon cell-inducing potential. To further explore function and applicability of Smad8 in regenerative medicine recombinant production is required. Herein, we further engineered cSmad8 to include the transactivation signal (TAT) of the human immunodeficiency virus (HIV) to allow internalization into cells. TAT-hcSmad8 was produced in endotoxin-free ClearColi® BL21 (DE3), refolded from inclusion bodies (IBs) and purified by Heparin chromatography. Analysis of TAT-hcSmad8 by thermal shift assay revealed the formation of a hydrophobic core. The presence of mixed α-helixes and ß-sheets, in line with theoretical models, was proven by circular dichroism. TAT-hcSmad8 was successfully internalized by C3H10T1/2 cells, where it was mainly found in the cytoplasm and partially in the nucleus. Finally, it was shown that TAT-hcSmad8 exhibited biological activity in C3H10T1/2 cells after co-stimulation with BMP-2.


Subject(s)
Escherichia coli , Inclusion Bodies , Protein Refolding , Smad8 Protein , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Smad8 Protein/biosynthesis , Smad8 Protein/chemistry , Smad8 Protein/genetics , Smad8 Protein/isolation & purification
14.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668611

ABSTRACT

The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin-proteasome system (UPS) or the autophagy-lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.


Subject(s)
Autophagy , Hepatocytes , Liver Diseases , Liver Transplantation , Liver , Protein Aggregation, Pathological , alpha 1-Antitrypsin , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/surgery , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Aggregation, Pathological/surgery , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism , alpha 1-Antitrypsin Deficiency/pathology
15.
Braz J Microbiol ; 52(2): 541-546, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33483893

ABSTRACT

Recombinant granulocyte colony-stimulating factor (G-CSF) protein produced in Escherichia coli has been widely used for the treatment of neutropenia induced by chemotherapy for decades. In E. coli cells, G-CSF is usually expressed as inactive inclusion bodies, which requires costly and inefficient denaturation and refolding steps to obtain the protein in its active form. However, following the findings of previous studies, we here successfully produced G-CSF in E. coli as non-classical inclusion bodies (ncIBs), which contained likely correctly folded protein. The ncIBs were easily dissolved in 0.2% N-lauroylsarcosine solution and then directly applied to a Ni-NTA affinity chromatography column to get G-CSF with high purity (> 90%). The obtained G-CSF was demonstrated to have a similar bioactivity with the well-known G-CSF containing product Neupogen (Amgen, Switzerland). Our finding clearly verified that the G-CSF production from ncIBs is a feasible approach to improve the yield and lower the cost of G-CSF manufacturing process.


Subject(s)
Escherichia coli/genetics , Gene Expression , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/metabolism , Inclusion Bodies/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Granulocyte Colony-Stimulating Factor/chemistry , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
16.
Sci Rep ; 11(1): 1978, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479441

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) patients express significant clinical heterogeneity that often hinders a correct diagnostic definition. Intracellular deposition of TDP-43, a protein involved in RNA metabolism characterizes the pathology. Interestingly, this protein can be detected in serum, wherein cognate naturally-occurring auto-antibodies (anti-TDP-43 NAb) might be also present, albeit they have never been documented before. In this exploratory study, we quantified the levels of both anti-TDP-43 NAb and TDP-43 protein as putative accessible markers for improving the ALS diagnostic process by using ELISA in N = 70 ALS patients (N = 4 carrying TARDBP mutations), N = 40 age-comparable healthy controls (CTRL), N = 20 motor neuron disease mimics (MN-m), N = 20 Alzheimer's disease (AD) and N = 15 frontotemporal lobar degeneration (FTLD) patients. Anti-TDP-43 NAb were found to be significantly increased in ALS patients compared to all the other groups (p < 0.001). On the other hand, the distribution of serum levels of TDP-43 protein was highly variable among the various groups. Levels were increased in ALS patients, albeit the highest values were detected in MN-m patients. NAb and protein serum levels failed to correlate. For the first time, we report that serum anti-TDP-43 NAb are detectable in human serum of both healthy controls and patients affected by a variety of neurodegenerative disorders; furthermore, their levels are increased in ALS patients, representing a potentially interesting trait core marker of this disease. Further studies are needed to clarify the exact role of the NAb. This information might be extremely useful for paving the way toward targeting TDP-43 by immunotherapy in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Antibodies, Anti-Idiotypic/blood , Autoantibodies/blood , DNA-Binding Proteins/immunology , Adult , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Antibodies, Anti-Idiotypic/isolation & purification , Autoantibodies/isolation & purification , DNA-Binding Proteins/genetics , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/genetics , Frontotemporal Dementia/immunology , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/immunology , Frontotemporal Lobar Degeneration/pathology , Humans , Inclusion Bodies/genetics , Inclusion Bodies/immunology , Inclusion Bodies/pathology , Male , Middle Aged , Motor Neuron Disease/blood , Motor Neuron Disease/genetics , Motor Neuron Disease/immunology , Motor Neuron Disease/pathology , Mutation/genetics
17.
Amyloid ; 28(1): 56-65, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33026249

ABSTRACT

Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/metabolism , DNA-Binding Proteins/genetics , Frontotemporal Dementia/genetics , Amyloid/genetics , Amyloid/ultrastructure , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/ultrastructure , Amyotrophic Lateral Sclerosis/pathology , Brain/pathology , Brain/ultrastructure , DNA-Binding Proteins/ultrastructure , Escherichia coli/genetics , Frontotemporal Dementia/pathology , Humans , Inclusion Bodies/genetics , Inclusion Bodies/pathology , Inclusion Bodies/ultrastructure , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Conformation , Protein Domains/genetics , Protein Structure, Secondary
18.
PLoS One ; 15(11): e0242798, 2020.
Article in English | MEDLINE | ID: mdl-33253286

ABSTRACT

Dermatopontin (DPT) is an extracellular matrix (ECM) protein with diversified pharmaceutical applications. It plays important role in cell adhesion/migration, angiogenesis and ECM maintenance. The recombinant production of this protein will enable further exploration of its multifaceted functions. In this study, DPT protein has been expressed in Escherichia coli (E.coli) aiming at cost effective recombinant production. The E.coli GJ1158 expression system was transformed with constructed recombinant vector (pRSETA-DPT) and protein was expressed as inclusion bodies on induction with NaCl. The inclusion bodies were solubilised in urea and renaturation of protein was done by on-column refolding procedure in Nickel activated Sepharose column. The refolded Histidine-tagged DPT protein was purified and eluted from column using imidazole and its purity was confirmed by analytical techniques. The biological activity of the protein was confirmed by collagen fibril assay, wound healing assay and Chorioallantoic Membrane (CAM) angiogenesis assay on comparison with standard DPT. The purified DPT was found to enhance the collagen fibrillogenesis process and improved the migration of human endothelial cells. About 73% enhanced wound closure was observed in purified DPT treated endothelial cells as compared to control. The purified DPT also could induce neovascularisation in the CAM model. At this stage, scaling up the production process for DPT with appropriate purity and reproducibility will have a promising commercial edge.


Subject(s)
Chondroitin Sulfate Proteoglycans/genetics , Cloning, Molecular , Extracellular Matrix Proteins/genetics , Recombinant Proteins/genetics , Cell Movement/genetics , Chondroitin Sulfate Proteoglycans/biosynthesis , Endothelial Cells/metabolism , Escherichia coli/genetics , Extracellular Matrix Proteins/biosynthesis , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Protein Folding , Recombinant Proteins/biosynthesis , Wound Healing/genetics
19.
Neurobiol Dis ; 146: 105085, 2020 12.
Article in English | MEDLINE | ID: mdl-32950644

ABSTRACT

Fused in sarcoma (FUS) is a RNA/DNA protein involved in multiple nuclear and cytoplasmic functions including transcription, splicing, mRNA trafficking, and stress granule formation. To accomplish these many functions, FUS must shuttle between cellular compartments in a highly regulated manner. When shuttling is disrupted, FUS abnormally accumulates into cytoplasmic inclusions that can be toxic. Disrupted shuttling of FUS into the nucleus is a hallmark of ~10% of frontotemporal lobar degeneration (FTLD) cases, the neuropathology that underlies frontotemporal dementia (FTD). Multiple pathways are known to disrupt nuclear/cytoplasmic shuttling of FUS. In earlier work, we discovered that double-strand DNA breaks (DSBs) trigger DNA-dependent protein kinase (DNA-PK) to phosphorylate FUS (p-FUS) at N-terminal residues leading to the cytoplasmic accumulation of FUS. Therefore, DNA damage may contribute to the development of FTLD pathology with FUS inclusions. In the present study, we examined how DSBs effect FUS phosphorylation in various primate and mouse cellular models. All cell lines derived from human and non-human primates exhibit N-terminal FUS phosphorylation following calicheamicin γ1 (CLM) induced DSBs. In contrast, we were unable to detect FUS phosphorylation in mouse-derived primary neurons or immortalized cell lines regardless of CLM treatment, duration, or concentration. Despite DNA damage induced by CLM treatment, we find that mouse cells do not phosphorylate FUS, likely due to reduced levels and activity of DNA-PK compared to human cells. Taken together, our work reveals that mouse-derived cellular models regulate FUS in an anomalous manner compared to primate cells. This raises the possibility that mouse models may not fully recapitulate the pathogenic cascades that lead to FTLD with FUS pathology.


Subject(s)
Brain/metabolism , DNA Damage/physiology , DNA/metabolism , Frontotemporal Lobar Degeneration/metabolism , RNA-Binding Protein FUS/genetics , Animals , Frontotemporal Lobar Degeneration/genetics , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Mice , Mutation/genetics , Neurons/metabolism , Phosphorylation , TATA-Binding Protein Associated Factors/genetics
20.
PLoS One ; 15(8): e0233247, 2020.
Article in English | MEDLINE | ID: mdl-32857759

ABSTRACT

Poly(glycine-alanine) (polyGA) is one of the polydipeptides expressed in Frontotemporal Dementia and/or Amyotrophic Lateral Sclerosis 1 caused by C9ORF72 mutations and accumulates as inclusion bodies in the brain of patients. Superficially these inclusions are similar to those formed by polyglutamine (polyQ)-expanded Huntingtin exon 1 (Httex1) in Huntington's disease. Both have been reported to form an amyloid-like structure suggesting they might aggregate via similar mechanisms and therefore recruit the same repertoire of endogenous proteins. When co-expressed in the same cell, polyGA101 and Httex1(Q97) inclusions adopted immiscible phases suggesting different endogenous proteins would be enriched. Proteomic analyses identified 822 proteins in the inclusions. Only 7 were specific to polyGA and 4 specific to Httex1(Q97). Quantitation demonstrated distinct enrichment patterns for the proteins not specific to each inclusion type (up to ~8-fold normalized to total mass). The proteasome, microtubules, TriC chaperones, and translational machinery were enriched in polyGA aggregates, whereas Dnaj chaperones, nuclear envelope and RNA splicing proteins were enriched in Httex1(Q97) aggregates. Both structures revealed a collection of folding and degradation machinery including proteins in the Httex1(Q97) aggregates that are risk factors for other neurodegenerative diseases involving protein aggregation when mutated, which suggests a convergence point in the pathomechanisms of these diseases.


Subject(s)
Inclusion Bodies/metabolism , Peptides/metabolism , Proteins/metabolism , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cell Line , Exons , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Inclusion Bodies/genetics , Inclusion Bodies/pathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Microscopy, Confocal , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Peptides/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Proteins/genetics , Proteolysis , Proteome/genetics , Proteome/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Risk Factors , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...