Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 578
Filter
1.
Article in English | MEDLINE | ID: mdl-39251387

ABSTRACT

In scenarios where yeast and bacterial cells coexist, it is of interest to simultaneously quantify the concentrations of both cell types, since traditional methods used to determine these concentrations individually take more time and resources. Here, we compared different methods for quantifying the fuel ethanol Saccharomyces cerevisiae PE-2 yeast strain and cells from the probiotic Lactiplantibacillus plantarum strain in microbial suspensions. Individual suspensions were prepared, mixed in 1:1 or 100:1 yeast-to-bacteria ratios, covering the range typically encountered in sugarcane biorefineries, and analyzed using bright field microscopy, manual and automatic Spread-plate and Drop-plate counting, flow cytometry (at 1:1 and 100:1 ratios), and a Coulter Counter (at 1:1 and 100:1 ratios). We observed that for yeast cell counts in the mixture (1:1 and 100:1 ratios), flow cytometry, the Coulter Counter, and both Spread-plate options (manual and automatic CFU counting) yielded statistically similar results, while the Drop-plate and microscopy-based methods gave statistically different results. For bacterial cell quantification, the microscopy-based method, Drop-plate, and both Spread-plate plating options and flow cytometry (1:1 ratio) produced no significantly different results (p > .05). In contrast, the Coulter Counter (1:1 ratio) and flow cytometry (100:1 ratio) presented results statistically different (p < .05). Additionally, quantifying bacterial cells in a mixed suspension at a 100:1 ratio wasn't possible due to an overlap between yeast cell debris and bacterial cells. We conclude that each method has limitations, advantages, and disadvantages. ONE-SENTENCE SUMMARY: This study compares methods for simultaneously quantifying yeast and bacterial cells in a mixed sample, highlighting that in different cell proportions, some methods cannot quantify both cell types and present distinct advantages and limitations regarding time, cost, and precision.


Subject(s)
Industrial Microbiology , Saccharomyces cerevisiae , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/cytology , Industrial Microbiology/methods , Flow Cytometry/methods , Colony Count, Microbial/methods , Bacterial Load/methods , Saccharum/microbiology , Microscopy/methods
2.
G3 (Bethesda) ; 13(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37267305

ABSTRACT

The large-scale and nonaseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ∼400 industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in 2 different biorefineries through 2 production seasons (April to November of 2018 and 2019), using a novel statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from season to season in 1 biorefinery is small compared to the differences between the 2 units. In 1 biorefinery, all lineages present during the entire production period derive from 1 of the starter strains, while in the other, invading lineages took over the population and displaced the starter strain. However, despite the presence of invading lineages and the nonaseptic nature of the process, all yeast clones we isolated are phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from this industrial niche. Despite the substantial changes observed in yeast populations through time in each biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the process is robust to the details of these population dynamics.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Saccharomyces cerevisiae/genetics , Brazil , Ecosystem , Industrial Microbiology , Fermentation
3.
Braz J Microbiol ; 54(2): 739-752, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37157054

ABSTRACT

Bacterial proteases have extensive applications in various fields of industrial microbiology. In this study, protease-producing organisms were screened on skimmed milk agar media using serial dilution. Through microbial biomass production, biochemical tests, protease-specific activity, and 16 s RNA gene sequencing, the isolates were identified as Bacillus subtilis and submitted to NCBI. The strain accession numbers were designated as A1 (MT903972), A2 (MT903996), A4 (MT904091), and A5 (MT904796). The strain A4 Bacillus subtilis showed highest protease-specific activity as 76,153.84 U/mg. A4 Bacillus subtilis was unaffected by Ca2+, Cu2+, Fe2+, Hg2+, Mg2+, Na, Fe2+, and Zn2+ but was inhibited by 80% by Mn2+ (5 mM). The protease activity was inhibited by up to 30% by iodoacetamide (5 mM). These findings confirm the enzyme to be a cysteine protease which was further confirmed by MALDI-TOF. The identified protease showed 71% sequence similarity with Bacillus subtilis cysteine protease. The crude cysteine protease significantly aided in fabric stain removal when added to a generic detergent. It also aided in the recovery of silver from used X-ray films and de-hairing of goat skin hides and showed decent application in meat tenderization. Thus, the isolated cysteine protease has high potential for industrial applications.


Subject(s)
Bacillus subtilis , Cysteine Proteases , Peptide Hydrolases/metabolism , Proteolysis , Industrial Microbiology , Bacterial Proteins/metabolism
4.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1345536

ABSTRACT

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Subject(s)
Benzaldehydes/metabolism , Flavoring Agents/metabolism , Bacillus subtilis/metabolism , Industrial Microbiology , Pseudomonas fluorescens/metabolism , Enterococcus faecium/metabolism , Culture Media , Alcaligenes faecalis/metabolism , Fermentation
5.
Sci Rep ; 12(1): 22466, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577778

ABSTRACT

The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.


Subject(s)
Multiomics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Coumaric Acids/metabolism , Fermentation , Ethanol/metabolism , Industrial Microbiology
6.
Fungal Biol ; 126(10): 658-673, 2022 10.
Article in English | MEDLINE | ID: mdl-36116898

ABSTRACT

In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Genotype , Industrial Microbiology , Saccharomyces cerevisiae/metabolism , Sugars
7.
J Biotechnol ; 355: 42-52, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35760147

ABSTRACT

The advancement of knowledge about the physiology of Dekkera bruxellensis has shown its potential for the production of fuel ethanol very close to the conventional fermenting yeast S. cerevisiae. However, some aspects of its metabolism remain uncovered. In the present study, the respiro-fermentative parameters of D. bruxellensis GDB 248 were evaluated under different cultivation conditions. The results showed that sucrose was more efficiently converted to ethanol than glucose, regardless the nitrogen source, which points out for the industrial efficiency of this yeast in sucrose-based substrate. The blockage of the cytosolic acetate production incremented the yeast fermentative efficiency by 27% (in glucose) and 14% (in sucrose). On the other hand, the presence of nitrate as inducer of acetate production reducing the production of ethanol. Altogether, these results settled the hypothesis that acetate metabolism is the main constraint for ethanol production. Besides, this acetate-generating pathway seems to exert some regulatory action on the flux and distribution of the carbon flowing through the central metabolism. These physiological aspects were corroborated by the relative expression analysis of key genes in the crossroad to ethanol, acetate and biomass formation. All the results were discussed in the light of the industrial potential of this yeast.


Subject(s)
Dekkera , Saccharomyces cerevisiae , Acetates/metabolism , Brettanomyces , Dekkera/genetics , Dekkera/metabolism , Ethanol/metabolism , Fermentation , Glucose/metabolism , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism
8.
Lett Appl Microbiol ; 74(6): 981-991, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35247276

ABSTRACT

The antibacterial activity of citrus essential oils (EOs) in the context of combating Limosilactobacillus fermentum, one of the most important bacterial contaminants in the bioethanol production industry, has never been explored previously. Industrial processes usually utilize sulfuric acid for cell treatment to decrease bacterial contamination. However, due to the hazardous nature of sulfuric acid, an alternative to it is highly desirable. Therefore, in the present study, the efficacy of Fremont IAC 543 mandarin EO against a strain of L. fermentum (ATCC® 9338™) was evaluated under proliferative/nonproliferative conditions, in both pure culture and co-culture with an industrial strain of Saccharomyces cerevisiae. The mandarin EO exhibited higher effectiveness against L. fermentum compared to that against S. cerevisiae under nonproliferative conditions (added to water rather than to culture medium). At the concentration of 0·05%, the EO was as effective as the acid solution with pH 2·0 in reducing the count of L. fermentum almost 5 log CFU ml-1 cycles, while the concentration of 0·1% led to the complete loss of bacterial culturability. When L. fermentum was co-cultured with S. cerevisiae, the efficacy of the EO against the bacterial strain was reduced. However, despite this reduced efficacy in co-culture, mandarin EO may be considered effective in combating L. fermentum and could be applied in processes where this bacterium proves to be unfavourable and does not interact with S. cerevisiae.


Subject(s)
Limosilactobacillus fermentum , Oils, Volatile , Anti-Bacterial Agents/metabolism , Ethanol/metabolism , Fermentation , Industrial Microbiology , Limosilactobacillus fermentum/metabolism , Oils, Volatile/pharmacology , Saccharomyces cerevisiae/metabolism
9.
Appl Environ Microbiol ; 88(5): e0206821, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35044803

ABSTRACT

Ethanolic fermentation is frequently performed under conditions of low nitrogen. In Saccharomyces cerevisiae, nitrogen limitation induces macroautophagy, including the selective removal of mitochondria, also called mitophagy. Previous research showed that blocking mitophagy by deletion of the mitophagy-specific gene ATG32 increased the fermentation performance during the brewing of Ginjo sake. In this study, we tested if a similar strategy could enhance alcoholic fermentation in the context of fuel ethanol production from sugarcane in Brazilian biorefineries. Conditions that mimic the industrial fermentation process indeed induce Atg32-dependent mitophagy in cells of S. cerevisiae PE-2, a strain frequently used in the industry. However, after blocking mitophagy, no significant differences in CO2 production, final ethanol titers, or cell viability were observed after five rounds of ethanol fermentation, cell recycling, and acid treatment, which is commonly performed in sugarcane biorefineries. To test if S. cerevisiae's strain background influenced this outcome, cultivations were carried out in a synthetic medium with strains PE-2, Ethanol Red (industrial), and BY (laboratory) with and without a functional ATG32 gene and under oxic and oxygen restricted conditions. Despite the clear differences in sugar consumption, cell viability, and ethanol titers, among the three strains, we did not observe any significant improvement in fermentation performance related to the blocking of mitophagy. We concluded, with caution, that the results obtained with Ginjo sake yeast were an exception and cannot be extrapolated to other yeast strains and that more research is needed to ascertain the role of autophagic processes during fermentation. IMPORTANCE Bioethanol is the largest (per volume) ever biobased bulk chemical produced globally. The fermentation process is well established, and industries regularly attain nearly 85% of maximum theoretical yields. However, because of the volume of fuel produced, even a small improvement will have huge economic benefits. To this end, besides already implemented process improvements, various free energy conservation strategies have been successfully exploited at least in laboratory strains to increase ethanol yields and decrease byproduct formation. Cellular housekeeping processes have been an almost unexplored territory in strain improvement. It was previously reported that blocking mitophagy by deletion of the mitophagy receptor gene ATG32 in Saccharomyces cerevisiae led to a 2.1% increase in final ethanol titers during Japanese sake fermentation. We found in two commercially used bioethanol strains (PE-2 and Ethanol Red) that ATG32 deficiency does not lead to a significant improvement in cell viability or ethanol levels during fermentation with molasses or in a synthetic complete medium. More research is required to ascertain the role of autophagic processes during fermentation conditions.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Alcoholic Beverages , Autophagy-Related Proteins , Ethanol , Fermentation , Industrial Microbiology , Mitophagy , Receptors, Cytoplasmic and Nuclear , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
10.
Prep Biochem Biotechnol ; 52(1): 30-37, 2022.
Article in English | MEDLINE | ID: mdl-33787455

ABSTRACT

The present study evaluated the influence of the variables polyethylene glycol (PEG) molar mass, pH, PEG concentration and sodium citrate concentration in the integrated production of the protease from Aspergillus tamarii Kita UCP1279 by extractive fermentation, obtaining as a response the partition coefficient (K), activity yield (Y) and concentration factor (CF). The enzyme preferably partitioned to the top phase and obtained in the system formed by variables MPEG = 400 g mol-1, CPEG = 20% (w w-1), and CCIT = 20% (w w-1) and pH 6, in this condition were obtained CF = 1.90 and Y = 79.90%. The protease showed stability at a temperature of 60 °C for 180 min, with optimum temperature 40 °C and pH 8.0. For the ions and inhibitors effects, the protease activity increased when exposed to Fe2+, Ca2+ and Zn2 + and inhibited by EDTA, being classified as metalloprotease. The kinetic parameters Km (35.63 mg mL-1) and Vmax (1.205 mg mL-1 min-1) were also estimated. Thus, the protease showed desirable characteristics that enable future industrial applications, especially, for beer industry.


Subject(s)
Aspergillus/metabolism , Citric Acid/chemistry , Fungal Proteins/metabolism , Peptide Hydrolases/metabolism , Polyethylene Glycols/chemistry , Enzyme Stability , Fermentation , Fungal Proteins/isolation & purification , Hydrogen-Ion Concentration , Industrial Microbiology , Peptide Hydrolases/isolation & purification , Temperature
11.
Biotechnol Appl Biochem ; 69(6): 2794-2818, 2022 Dec.
Article in English | MEDLINE | ID: mdl-33481298

ABSTRACT

Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.


Subject(s)
Glycerol , Industrial Microbiology , Glycerol/metabolism , Butanols , Biofuels , Fermentation , 1-Butanol
12.
FEMS Yeast Res ; 21(8)2021 12 24.
Article in English | MEDLINE | ID: mdl-34902032

ABSTRACT

The ethanol yield on sugar during alcoholic fermentation allows for diverse interpretation in academia and industry. There are several different ways to calculate this parameter, which is the most important one in this industrial bioprocess and the one that should be maximized, as reported by Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91). On the one hand, the various methods currently employed in industry provide dissimilar results, and recent evidence shows that yield has been consistently overestimated in Brazilian sugarcane biorefineries. On the other hand, in academia, researchers often lack information on all the intricate aspects involved in calculating the ethanol yield in industry. Here, we comment on these two aspects, using fuel ethanol production from sugarcane in Brazilian biorefineries as an example, and taking the work of Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91.) as a starting point. Our work is an attempt to demystify some common beliefs and to foster closer interaction between academic and industrial professionals from the fermentation sector. Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91).


Subject(s)
Ethanol , Saccharum , Brazil , Fermentation , Industrial Microbiology
13.
Braz J Biol ; 83: e250550, 2021.
Article in English | MEDLINE | ID: mdl-34730714

ABSTRACT

Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Subject(s)
Benzaldehydes , Flavoring Agents , Alcaligenes faecalis/metabolism , Bacillus subtilis/metabolism , Benzaldehydes/metabolism , Culture Media , Enterococcus faecium/metabolism , Fermentation , Flavoring Agents/metabolism , Industrial Microbiology , Pseudomonas fluorescens/metabolism
14.
Braz J Microbiol ; 52(4): 1835-1843, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34561846

ABSTRACT

Baculoviruses have been applied for biocontrol of agricultural pests, such as velvetbean caterpillar (Anticarsia gemmatalis) and fall armyworm (Spodoptera frugiperda). Cell culture is an interesting approach for large-scale production of these viruses. Co-infection of a host cell with two distinct viruses can contribute to reduce costs due to saving cell culture media, bioreactor space and the resulting co-occluded polyhedra may help to reduce final biopesticide costs. The baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) were chosen to test a model for in vitro co-infection in SF21 cells. Different proportions of SfMNPV/AgMNPV were evaluated along three in vitro passages by optical microscopy analysis of cells and real-time PCR (qPCR) of DNA obtained from budded viruses (BVs) and occlusion bodies (OBs). The kinetics of viral protein synthesis was carried out for analysis of the co-infection in first passage and bioassays with the resulting OBs were performed against A. gemmatalis and S. frugiperda larvae. The results demonstrated successful co-infection in these cells. The quantity of SfMNPV and AgMNPV in supernatants and sediments tends to be maintained stable during the three passages, although the amount of AgMNPV was higher than SfMPNV in most of the experiments. Analysis of the kinetics of radiolabed proteins showed that the cell protein synthesis was shut off and two distinct bands of about 30 kDa, regarded to be the polyhedrin of each virus, were strongly detected at 48 and 72 hp.i. Although the pathogenicity of the produced viruses was not completely satisfactory, the bioassays confirmed occurrence of co-infected larvae with disproportional amount of each virus.


Subject(s)
Industrial Microbiology , Nucleopolyhedroviruses , Spodoptera , Virology , Animals , Industrial Microbiology/methods , Industrial Microbiology/trends , Larva/virology , Nucleopolyhedroviruses/physiology , Sf9 Cells , Spodoptera/virology , Virology/methods , Virology/trends
15.
Braz J Microbiol ; 52(4): 2117-2128, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34510397

ABSTRACT

The identification of novel bacterial strains with a high production potential of polyhydroxybutyrate (PHB) to substitute the bioplastics with non-biodegradable plastics and reducing environmental pollution is really effective. The present study was done with the purpose of PHB bioplastic production using a novel bacterial strain. Twenty-one different bacterial isolates were obtained from petrochemical wastewater, which among them, 10 isolates were PHB positive. The presence of PHB granules was detected in the isolates using Sudan Black B staining. The most excellent PHB-accumulating bacterium with a maximum yield of PHB (61.53%) was selected and identified as Bacillus cereus saba.zh, based on morphological, biochemical, and molecular techniques. 16S rRNA nucleotide sequence of the bacterium was assigned accession number: MT975245 in the NCBI database. The phylogenetic tree data showed that the closest type strain to the Bacillus cereus saba.zh is the Bacillus cereus SDB4 (91%). The three genes (phaA, phaB, and phaC) responsible for the PHB biosynthesis were amplified using the specific oligonucleotide primers by PCR technique. The highest PHB yield was achieved when the culture medium was supplemented with 3% sugarcane molasses as a carbon source, ammonium sulfate as the nitrogen source, at pH 7, and temperature of 30 °C. The characterization of the extracted polymer by FTIR and 1H NMR spectroscopy proves the presence of methyl, methylene, methine, hydroxyl, and ester carbonyl groups and confirmed the structure of biopolymer as PHB. The novel strain Bacillus cereus saba.zh has good potential as an appropriate candidate for low-cost industrial production of bioplastic.


Subject(s)
Bacillus cereus , Hydroxybutyrates , Industrial Microbiology , Bacillus cereus/genetics , Bacillus cereus/metabolism , Hydroxybutyrates/metabolism , Phylogeny , Polyesters , RNA, Ribosomal, 16S/genetics
16.
Braz J Microbiol ; 52(4): 1779-1790, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34510399

ABSTRACT

Microalgae cultivation for exopolysaccharide production has getting more attention as a result of their high hydrocarbon biosynthesis skill. The aim of this study is to examine the exopolysaccharide production potential of different species of microalgae. In this context, exopolysaccharides were produced from Chlorella minutissima, Chlorella sorokiniana and Botryococcus braunii microalgae and the effects of carbon and nitrogen content in the growth medium and illumination time on exopolysaccharide production were analyzed statistically using Box-Behnken experimental design. In addition, techno-economic assessment of exopolysaccharide production were also performed by using the most productive microalgae and optimum conditions determined in this study. As a result of the experiments, it was seen that C. minutissima, C. sorokiniana and B. braunii produced 0.245 ± 0.0025 g/L, 0.163 ± 0.0016 g/L and 0.117 ± 0.0007 g/L exopolysaccharide, respectively. Statistically, it was observed that there was an inverse relationship between the exopolysaccharide production and investigated parameters such as illumination period and carbon and nitrogen amounts of culture mediums. The techno-economic assessment comprising microalgal exopolysaccharide (EPS) bioprocess was carried out, and it showed that the system can be considered economically viable, yet can be improved with biorefinery approach.


Subject(s)
Microalgae , Polysaccharides , Biomass , Carbon/analysis , Culture Media/chemistry , Industrial Microbiology/economics , Microalgae/chemistry , Nitrogen/analysis , Polysaccharides/biosynthesis , Polysaccharides/chemistry
17.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34137896

ABSTRACT

Fructooligosaccharides (FOSs)-fructose-based oligosaccharides-are typical prebiotics with health-promoting effects in humans and animals. The trisaccharide 1-kestotriose is the most attractive inulin-type FOS. We previously reported a recombinant sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99) from Schedonorus arundinaceus (Sa) that efficiently converts sucrose into 1-kestotriose. In this study, Pichia pastoris PGFT6x-308 constitutively expressing nine copies of the Sa1-SST gene displayed fructosyltransferase activity in undisrupted biomass (49.8 U/ml) and culture supernatant (120.7 U/ml) in fed-batch fermentation (72 hr) with sugarcane molasses. Toluene permeabilization increased 2.3-fold the Sa1-SSTrec activity of whole cells entrapped in calcium-alginate beads. The reaction with refined or raw sugar (600 g/l) yielded 1-kestotriose and 1,1-kestotetraose in a ratio of 8:2 with their sum representing above 55% (wt/wt) of total carbohydrates. The FOSs yield decreased to 45% (wt/wt) when sugarcane syrup and molasses were used as cheaper sucrose sources. The beads retained 80% residual Sa1-SSTrec activity after a 30-day batchwise operation with refined cane sugar at 30°C and pH 5.5. The immobilized biocatalyst is attractive for the continuous production of short-chain FOSs, most particularly 1-kestotriose.


Subject(s)
Hexosyltransferases/metabolism , Oligosaccharides/metabolism , Pichia/metabolism , Alginates/chemistry , Carbohydrates/analysis , Cell Membrane Permeability/drug effects , Cells, Immobilized , Fermentation , Hexosyltransferases/genetics , Humans , Industrial Microbiology , Inulin/metabolism , Molasses , Pichia/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales , Sucrose , Toluene/pharmacology , Trisaccharides/biosynthesis
18.
Essays Biochem ; 65(2): 147-161, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34156078

ABSTRACT

Fuel ethanol is produced by the yeast Saccharomyces cerevisiae mainly from corn starch in the United States and from sugarcane sucrose in Brazil, which together manufacture ∼85% of a global yearly production of 109.8 million m3 (in 2019). While in North America genetically engineered (GE) strains account for ∼80% of the ethanol produced, including strains that express amylases and are engineered to produce higher ethanol yields; in South America, mostly (>90%) non-GE strains are used in ethanol production, primarily as starters in non-aseptic fermentation systems with cell recycling. In spite of intensive research exploring lignocellulosic ethanol (or second generation ethanol), this option still accounts for <1% of global ethanol production. In this mini-review, we describe the main aspects of fuel ethanol production, emphasizing bioprocesses operating in North America and Brazil. We list and describe the main properties of several commercial yeast products (i.e., yeast strains) that are available worldwide to bioethanol producers, including GE strains with their respective genetic modifications. We also discuss recent studies that have started to shed light on the genes and traits that are important for the persistence and dominance of yeast strains in the non-aseptic process in Brazil. While Brazilian bioethanol yeast strains originated from a historical process of domestication for sugarcane fermentation, leading to a unique group with significant economic applications, in U.S.A., guided selection, breeding and genetic engineering approaches have driven the generation of new yeast products for the market.


Subject(s)
Saccharomyces cerevisiae , Saccharum , Ethanol , Fermentation , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Saccharum/genetics
19.
Arch Microbiol ; 203(7): 4091-4100, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34052891

ABSTRACT

This work aimed to investigate the production of prodigiosin by S. marcescens UCP 1549 in solid-state fermentation (SSF), as a sustainable alternative for reducing the production costs and environmental impact. Thus, different agro-industrial substrates were used in the formulation of the prodigiosin production medium, obtaining the maximum yield of pigment (119.8 g/kg dry substrate) in medium consisting of 5 g wheat bran, 5% waste soybean oil and saline solution. The pigment was confirmed as prodigiosin by the maximum absorbance peak at 535 nm, Rf 0.9 in TLC, and the functional groups by infrared spectrum (FTIR). Prodigiosin demonstrated stability at different values of temperature, pH and NaCl concentrations and antimicrobial properties, as well as not show any toxicity. These results confirm the applicability of SSF as a sustainable and promising technology and wheat bran as potential agrosubstrate to produce prodigiosin, making the bioprocess economic and competitive for industrial purposes.


Subject(s)
Industrial Microbiology , Prodigiosin , Serratia marcescens , Anti-Bacterial Agents/biosynthesis , Culture Media/chemistry , Fermentation , Industrial Microbiology/methods , Prodigiosin/biosynthesis , Serratia marcescens/metabolism
20.
FEMS Yeast Res ; 21(4)2021 05 26.
Article in English | MEDLINE | ID: mdl-33983370

ABSTRACT

In this work, we evaluated the fermentative performance and metabolism modifications of a second generation (2G) industrial yeast by comparing an industrial condition during laboratory and industrial scale fermentations. Fermentations were done using industrial lignocellulosic hydrolysate and a synthetic medium containing inhibitors and analyses were carried out through transcriptomics and proteomics of these experimental conditions. We found that fermentation profiles were very similar, but there was an increase in xylose consumption rate during fermentations using synthetic medium when compared to lignocellulosic hydrolysate, likely due to the presence of unknown growth inhibitors contained in the hydrolysate. We also evaluated the bacterial community composition of the industrial fermentation setting and found that the presence of homofermentative and heterofermentative bacteria did not significantly change the performance of yeast fermentation. In parallel, temporal differentially expressed genes (tDEG) showed differences in gene expression profiles between compared conditions, including heat shocks and the presence of up-regulated genes from the TCA cycle during anaerobic xylose fermentation. Thus, we indicate HMF as a possible electron acceptor in this rapid respiratory process performed by yeast, in addition to demonstrating the importance of culture medium for the performance of yeast within industrial fermentation processes, highlighting the uniquenesses according to scales.


Subject(s)
Ethanol/metabolism , Fermentation , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Bacteria , Culture Media , Gene Expression Regulation, Fungal , Industrial Microbiology , Lignin/metabolism , Proteome , RNA-Seq , Saccharomyces cerevisiae/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL