Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.306
Filter
1.
Sci Rep ; 14(1): 10723, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730012

ABSTRACT

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Microwaves , Sewage , Sewage/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anaerobiosis , Meat/analysis , Biological Oxygen Demand Analysis , Biofuels/analysis , Food Industry , Industrial Waste
2.
World J Microbiol Biotechnol ; 40(6): 189, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702568

ABSTRACT

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.


Subject(s)
Biodegradation, Environmental , Metals, Rare Earth , Microalgae , Microalgae/metabolism , Metals, Rare Earth/metabolism , Bacteria/metabolism , Bacteria/classification , Environmental Restoration and Remediation/methods , Biotechnology/methods , Industrial Waste/analysis , Bioaccumulation
3.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702592

ABSTRACT

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Subject(s)
Antimony , Mycorrhizae , Olea , Soil Pollutants , Mycorrhizae/physiology , Olea/microbiology , Soil Pollutants/metabolism , Antimony/metabolism , Adaptation, Physiological , Industrial Waste , Photosynthesis/drug effects , Biodegradation, Environmental , Biomass
4.
Braz J Biol ; 84: e282386, 2024.
Article in English | MEDLINE | ID: mdl-38695424

ABSTRACT

Due to the need to achieve the principles of sustainable development and to understand the processes of formation of phytocenoses in areas that were adversely affected by the industrial impact, this study assessed the condition of the Grachevsky uranium mine (Kazakhstan), which underwent conservation procedures about 25 years ago. The purpose is to determine the level of water quality and phytocenosis of the shores of the reservoir accumulating natural effluents from reclaimed dumps and anthropogenic sites of a uranium mine, as well as quality indicators and toxicology. The assessment included a qualitative research method (analysis of documents) to determine agro-climatic conditions and empirical methods of collecting information. The authors studied the intensity of ionizing radiation of the gamma background of the water surface of the reservoir (and sections of the shoreline and territories adjacent to the reservoir), and hydrochemical parameters of the waters of the reservoir, and performed a description of the botanical diversity. The vegetation cover of the sections of the reservoir shore is at different stages of syngenesis and is represented by pioneer groupings, group thicket communities, and diffuse communities. Favorable ecological conditions for the settlement and development of plants develop within the shores of the reservoir. The intensity levels of ionizing radiation do not exceed the maximum permissible levels and practically do not affect the formation of phytocenoses. An anthropogenically modified dry meadow with the participation of plants typical of the steppe zone has been formed on the floodplain terrace. Concerning the indicators of quality and toxicology of this reservoir, the water can be used for household and drinking purposes under the condition of prior water treatment. It can be concluded that a high level of natural purification of the reservoir waters occurred within twenty years after the reclamation of the uranium mine.


Subject(s)
Mining , Uranium , Water Quality , Uranium/analysis , Biodiversity , Industrial Waste/analysis , Kazakhstan , Environmental Monitoring/methods , Plants/chemistry , Plants/classification , Water Pollutants, Radioactive/analysis , Waste Disposal Facilities
5.
Bioresour Technol ; 401: 130743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677388

ABSTRACT

The cost of detoxification and neutralization poses certain challenges to the development of an economically viable lactic acid biorefinery with lignocellulosic biomass as feedstock. Herein, red mud, an alkaline waste, was explored as both a detoxifying agent and a neutralizer. Red mud treatment of lignocellulosic hydrolysate effectively removed the inhibitors generated in dilute acid pretreatment, improving the lactic acid productivity from 1.0 g/L·h-1 to 1.9 g/L·h-1 in later fermentation. In addition, red mud could replace CaCO3 as a neutralizer in lactic acid fermentation, which in turn enabled simultaneous bioleaching of valuable metals (Sc, Y, Nd, and Al) from red mud. The neutralization of alkali in red mud by acids retained in lignocellulosic hydrolysate and lactic acid produced from fermentation led to effective dealkalization, rendering a maximum alkali removal efficiency of 92.2 %. Overall, this study offered a win-win strategy for the valorization of both lignocellulosic biomass and red mud.


Subject(s)
Lactic Acid , Lignin , Lignin/chemistry , Fermentation , Aluminum Oxide/chemistry , Biomass , Hydrolysis , Industrial Waste
6.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619909

ABSTRACT

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Subject(s)
Graphite , Solanum lycopersicum , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Aluminum , Electrocoagulation/methods , Water , Electrodes , Industrial Waste/analysis
7.
J Hazard Mater ; 470: 134234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608584

ABSTRACT

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Subject(s)
Olea , Phenols , Pomegranate , Pomegranate/chemistry , Phenols/analysis , Olea/chemistry , Soil/chemistry , Industrial Waste , Solid Waste , Rhizosphere , Photosynthesis/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Soil Microbiology , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Agriculture
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612793

ABSTRACT

The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products (Cannabis sativa L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts. Within the hemp value chain, various agricultural wastes and by-products are generated. These materials can be valorised through eco-innovations, ultimately promoting sustainable economic development. In this study, we explored the use of waste from industrial light cannabis production for the extraction of bioactive compounds without the addition of chemicals. The five extracts obtained were tested for their antimicrobial activity on both planktonic and sessile cells of pathogenic strains of the Candida albicans, Candida parapsilosis, and Candida tropicalis species and for their antioxidant activity on HT-29 colon cancer cells under oxidative stress. Our results demonstrated that these extracts display interesting properties both as antioxidants and in hindering the development of fungal biofilm, paving the way for further investigations into the sustainable valorisation of hemp waste for different biomedical applications.


Subject(s)
Anti-Infective Agents , Cannabis , Colonic Neoplasms , Candida , Antioxidants/pharmacology , Tissue Adhesions , Biofilms , Industrial Waste
9.
Article in English | MEDLINE | ID: mdl-38573823

ABSTRACT

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Subject(s)
Escherichia coli , Lithium , Porins , Escherichia coli/genetics , Escherichia coli/metabolism , Adsorption , Industrial Waste , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Wastewater/microbiology , Electric Power Supplies , Cell Surface Display Techniques , Recombinant Proteins/genetics
10.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588736

ABSTRACT

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Subject(s)
Betula , Biodegradation, Environmental , Coal Ash , Soil Pollutants , Arsenic , Mercury , Mining , Fertilizers , Steel , Environmental Restoration and Remediation/methods , Soil/chemistry , Industrial Waste
11.
PLoS One ; 19(4): e0301607, 2024.
Article in English | MEDLINE | ID: mdl-38598514

ABSTRACT

The continuous accumulation of waste, particularly from industries, often ends up in landfills. However, this waste can be transformed into a valuable resource through innovative methods. This process not only reduces environmental pollution but also generates additional useful products. This study aims to screen novel high-efficiency cellulose-degrading bacteria from cow dung, forest soil, brewery waste, and agro-industrial waste in the Debre Berhan area for the treatment of cellulose-rich agricultural waste. The serial dilution and pour plate method was used to screen for cellulolytic bacteria and further characterized using morphological and biochemical methods. From eleven isolates cow dung 1 (CD1), cow dung 6 (CD6) and cow dung (CD3) which produced the largest cellulolytic index (3.1, 2.9 and 2.87) were selected. Samples from forest soil, and spent grain didn't form a zone of clearance, and effluent treatment and industrial waste (IW9) shows the smallest cellulolytic index. Three potential isolates were then tested for cellulolytic activity, with cow dung 1 (CD1) displaying promising cellulase activity. These bacterial isolates were then identified as Bacillus species, which were isolated from cow dung 1 (CD1) with maximum cellulase production. Cow dung waste is a rich source of cellulase-producing bacteria, which can be valuable and innovative enzymes for converting lignocellulosic waste.


Subject(s)
Cellulase , Animals , Female , Cattle , Cellulase/chemistry , Industrial Waste , Bacteria , Cellulose , Soil , Forests
12.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600576

ABSTRACT

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Subject(s)
Industrial Waste , Saccharomyces cerevisiae , Fermentation , Lactic Acid , Hydrolysis , Sodium Hydroxide , Textiles , Glucose
13.
PLoS One ; 19(4): e0302176, 2024.
Article in English | MEDLINE | ID: mdl-38635601

ABSTRACT

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Subject(s)
Waste Management , Waste Management/methods , Lithium , Solid Waste , Construction Materials , Recycling/methods , Industrial Waste/analysis
14.
J Environ Manage ; 357: 120800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579471

ABSTRACT

Calcium carbide residue (CCR), a by-product of the acetylene industry, is generated at a rate of 136 million tonnes per year, posing significant environmental risks. This review examines the potential utilisation of CCR in soil stabilisation, focusing on its stabilisation mechanism, performance in improving mechanical properties, environmental safety, and sustainability. The aim is to identify future research directions for CCR-based stabilisation to promote its broader application, and to provide references for managing similar Ca-rich wastes. CCR-based materials demonstrate promising benefits in enhancing various soil properties, such as uniaxial strength, swelling properties, triaxial shear behaviour, compressibility, and dynamic responses, while also reducing the mobility of contaminants. Compared to conventional stabilisers, CCR-based materials exhibit comparable performance in soil improvement, environmental impact and safety, and economic feasibility. However, further research is required to delve deeper into stabilisation mechanisms, mechanical properties, and stability of contaminants for the soil treated with CCR-based materials under diverse conditions.


Subject(s)
Acetylene/analogs & derivatives , Industrial Waste , Soil , Soil/chemistry , Calcium
15.
Chemosphere ; 357: 142062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636915

ABSTRACT

Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.


Subject(s)
Bioreactors , Coffee , Manure , Methane , Sewage , Waste Disposal, Fluid , Wastewater , Animals , Methane/metabolism , Cattle , Anaerobiosis , Wastewater/chemistry , Coffee/metabolism , Waste Disposal, Fluid/methods , Industrial Waste , Biofuels
16.
Waste Manag ; 182: 11-20, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38626501

ABSTRACT

Recycling aluminium in a rotary furnace with salt-fluxes allows recovering valuable alloys from hard-to-recycle waste/side-streams such as packaging, dross and incinerator bottom ash. However, this recycling route generates large amounts of salt-slag/salt-cake hazardous wastes which can pose critical environmental risks if landfilled. To tackle this issue, the metallurgical industry has developed processes to valorise the salt-slag residues into recyclable salts and aluminium concentrates, while producing by-products such as ammonium sulphate and non-metallic compounds (NMCs), with applications in the construction or chemical industries. This study aims to assess through LCA the environmental impacts of recycling aluminium in rotary furnaces for both salt-slag management routes: valorisation or landfill. It was found that this recycling process brings forth considerable net environmental profits, which increase for all the considered impact categories if the salt-slag is valorised. The main benefits arise from the production of secondary cast aluminium alloys, which is not unexpected due to the high energy intensity of aluminium primary production. However, the LCA results also identify other hotspots which play a significant role, and which should be considered for the optimisation of the process based on its environmental performance, such as the production of by-products, the consumption of energy/fuels and the avoidance of landfilling waste. Additionally, the assessment shows that the indicators for mineral resource scarcity, human carcinogenic toxicity and terrestrial ecotoxicity are particularly benefited by the salt-slag valorisation. Finally, a sensitivity analysis illustrates the criticality of the metal yield assumptions when calculating the global warming potential of aluminium recycling routes.


Subject(s)
Aluminum , Incineration , Recycling , Incineration/methods , Recycling/methods , Aluminum/chemistry , Aluminum/analysis , Environment , Industrial Waste/analysis , Metallurgy
17.
Water Res ; 256: 121616, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657305

ABSTRACT

Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment, enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials, the transition to pilot-scale applications remains limited, leaving the actual performance of these scaled-up cathodes largely unknown. In this study, nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days, with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration, yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m-2 d-1 and 0.21 ± 0.01 m3 m-3 d-1). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand, the higher price of Ni-foam compared to stainless-steel should also be considered, which may constrain its use in real applications. By carefully analysing the energy balance of the system, this study demonstrates that MECs have the potential to be net energy producers, in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements, they also resulted in enhanced hydrogen production. For our system, a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally, the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria, predominantly Geobacter and Bacteroides, which appeared to be well-suited to transform complex organic matter into hydrogen.


Subject(s)
Electrodes , Electrolysis , Hydrogen , Nickel , Wastewater , Wastewater/chemistry , Hydrogen/metabolism , Nickel/chemistry , Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Pilot Projects , Industrial Waste
18.
Environ Monit Assess ; 196(5): 488, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687382

ABSTRACT

Clean water is essential for drinking, household use, and agriculture. Researchers studied 39 sites near Tamla nala and Nunia nala channels in Durgapur and Asansol City (West Bengal) to assess the deterioration level of water due to industrial discharge. During the first phase out of three, the researchers conducted a spatial representation of various physicochemical parameters, such as temperature, pH, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Hardness (TH), Electrical Conductivity (EC), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), significant anions such as chloride (Cl-), nitrate (NO3-), phosphate (PO4-3), sulfate (SO42-), cyanide (CN-1) and fluoride (F-), as well as heavy metals/metalloids such as lead (Pb), cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu), nickel (Ni), mercury (Hg) and arsenic (As). As observed the parameters at various sites along the stream exceeded threshold limits majorly due to industrial discharge: highest pH, TDS, TH, EC, Cl-, SO42- at site 26; Fe at site 1, TSS, COD, CN- at site 33, 31, 2 respectively; Cd, Ni, Cu at site 19; Hg and Pb at site 3 and As at site 20. Contaminated areas were marked in red and secure areas in green. Additionally, the HMPI (Heavy metal pollution index) was estimated for eight locations to understand the impact of heavy metal pollution in the second phase of the study. An extremely high HMPI indicates heightened toxicity and health risks for both residents and outsiders. The Canadian Water Quality Index (1.0) was calculated for eight sites in the third phase based on seventeen parameters. The resulting WQI value was below 44, indicating poor water quality at the sites. Due to the poor quality and critical heavy metal toxicity, the authors recommended continuous monitoring, strict regulation enforcement, increased treatment capacity, Zero Liquid Discharge implementation, and raising awareness among residents.


Subject(s)
Environmental Monitoring , Metals, Heavy , Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Rivers/chemistry , India , Biological Oxygen Demand Analysis , Industrial Waste/analysis
19.
J Environ Manage ; 358: 120863, 2024 May.
Article in English | MEDLINE | ID: mdl-38615396

ABSTRACT

This study aims to remove Congo red dye from industrial effluent using economical agriculturally-based nano-biosorbents like magnetic orange peel, peanut shells, and tea waste. The nano-biosorbents were characterized by various analytical techniques like SEM, FT-IR, BET and XRD. The highest adsorption capacity was obtained under the following ideal conditions: pH = 6 (orange peel and peanut shells), pH = 3 (tea waste), and dosages of nano-biosorbents with varying timeframes of 50 min for tea waste and peanut shells and 30 min for orange peel. The study found that tea waste had the highest removal rate of 94% due to its high porosity and responsible functional groups, followed by peanut shells at 83% and orange peel at 68%. The Langmuir isotherm model was found to be the most suitable, with R2 values of 0.99 for tea waste, 0.92 for orange peel, and 0.71 for peanut shells. On the other hand, a pseudo-second-order kinetic model was very feasible, showing an R2 value of 0.99 for tea waste, 0.98 for peanut shells and 0.97 for orange peel. The significance of the current study lies in its practical application, enabling efficient waste management and water purification, thereby preserving a clean and safe environment.


Subject(s)
Congo Red , Congo Red/chemistry , Kinetics , Adsorption , Agriculture , Water Pollutants, Chemical/chemistry , Industrial Waste , Spectroscopy, Fourier Transform Infrared , Tea/chemistry , Arachis/chemistry , Hydrogen-Ion Concentration
20.
Waste Manag ; 182: 225-236, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677140

ABSTRACT

This article explores the impact of thermally treated asbestos-cement waste (ACWT) on metakaolin-based geopolymers, using liquid sodium silicate (LSS) and liquid potassium silicate (LKS) as alkali activators. Through statistical mixture design, various formulations were tested for rheological parameters, mineralogical composition, efflorescence mass, electrical conductivity, compressive strength, and CO2 emissions. Formulations with sodium silicate exhibited higher yield stress compared to those with potassium silicate, while flash setting occurred in LKS-activated mixtures with high ACWT content. Alkali activator content significantly affected mechanical strength and leachate electrical conductivity. CO2 emissions were higher for LKS-activated formulations but lower for those with more ACWT. Finally, by incorporating ACWT, it was possible to optimize the formulations, resulting in high compressive strength, reduced free ions, and reduced negative environmental impact.


Subject(s)
Asbestos , Carbon Dioxide , Construction Materials , Silicates , Carbon Dioxide/analysis , Silicates/chemistry , Construction Materials/analysis , Asbestos/analysis , Compressive Strength , Industrial Waste/analysis , Electric Conductivity , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...