Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.676
Filter
1.
PLoS One ; 19(5): e0302015, 2024.
Article in English | MEDLINE | ID: mdl-38728332

ABSTRACT

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Subject(s)
Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711064

ABSTRACT

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Subject(s)
Acrylamides , Gout , Histone Deacetylases , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Phenylenediamines , Uric Acid , Animals , Uric Acid/toxicity , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Macrophages/metabolism , Macrophages/drug effects , Gout/metabolism , Gout/pathology , Mice , Inflammation/metabolism , Inflammation/chemically induced , Male , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Disease Models, Animal , Signal Transduction/drug effects
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710513

ABSTRACT

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Subject(s)
Acute Lung Injury , Heme Oxygenase-1 , Lipopolysaccharides , Lung , Mice, Inbred C57BL , Mice, Knockout , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Lung/pathology , Lung/immunology , Lung/metabolism , Mice , Lipopolysaccharides/adverse effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Inflammation/genetics , Inflammation/chemically induced , Inflammation/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism
4.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727158

ABSTRACT

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Subject(s)
Down-Regulation , Inflammation , Mercury , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Inflammation/chemically induced , Inflammation/metabolism , Mercury/toxicity , Signal Transduction/drug effects , Occupational Exposure/adverse effects , HEK293 Cells , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/blood
5.
J Physiol Pharmacol ; 75(2): 123-136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736260

ABSTRACT

Myocardial infarction (MI) is a significant global health issue and the leading cause of death. Myocardial infarction (MI) is characterized by events such as damage to heart cells and stress generated by inflammation. Punicalagin (PCN), a naturally occurring bioactive compound found in pomegranates, exhibits a diverse array of pharmacological effects against many disorders. This study aimed to assess the preventive impact of PCN, with its potential anti-inflammatory and antioxidant properties, on myocardial injury caused by isoproterenol (ISO) in rats and elucidate the possible underlying mechanisms. Experimental rats were randomly categorized into four groups: control group (fed a regular diet for 15 days), PCN group (orally administered PCN at 50 mg/kg body weight (b.w.) for 15 days), ISO group (subcutaneously administered ISO (85 mg/kg b.w.) on days 14 and 15 to induce MI), and PCN+ISO group (orally preadministered PCN (50 mg/kg b.w.) for 15 days and administered ISO (85 mg/kg b.w.) on days 14 and 15). The rat cardiac tissue was then investigated for cardiac marker, oxidative stress marker, and inflammatory marker expression levels. PCN prevented ISO-induced myocardial injury, suppressing the levels of creatine kinase-myocardial band, C-reactive protein, homocysteine, cardiac troponin T, and cardiac troponin I in the rats. Moreover, PCN treatment reversed (P<0.01) the ISO-induced increase in blood pressure, attenuated lipid peroxidation markers, and depleted both enzymatic and nonenzymatic markers in the rats. Additionally, PCN inhibited (P<0.01) ISO-induced overexpression of oxidative stress markers (p-38, p-c-Jun N-terminal kinase, and p-extracellular signal-regulated kinase 1), inflammatory markers (nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-6), and matrix metalloproteinases and decreased the levels (P<0.01) of apoptosis proteins in the rats. Nuclear factor erythroid 2-related factor 2/silent information regulator transcript-1 (Nrf2/Sirt1) is a major cellular defense protein that regulates and scavenges oxidative toxic substances through apoptosis. Therefore, overexpression of Nrf2/Sirt1 to inhibit inflammation and oxidative stress is considered a novel target for preventing MI. PCN also significantly enhanced the expression of Nrf2/Sirt1 in ISO-induced rats. Histopathological analyses of cardiac tissue revealed that PCN treatment exhibited a protective effect on the heart tissue, mitigating damage. These findings show that by activating the Nrf2/Sirt1 pathway, PCN regulates oxidative stress, inflammation, and apoptosis, hence providing protection against ISO-induced myocardial ischemia.


Subject(s)
Hydrolyzable Tannins , Inflammation , Isoproterenol , Myocardial Infarction , NF-E2-Related Factor 2 , Oxidative Stress , Sirtuin 1 , Animals , Isoproterenol/toxicity , Myocardial Infarction/chemically induced , Myocardial Infarction/prevention & control , Myocardial Infarction/metabolism , NF-E2-Related Factor 2/metabolism , Male , Hydrolyzable Tannins/pharmacology , Sirtuin 1/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/prevention & control , Inflammation/chemically induced , Rats , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Rats, Wistar , Biomarkers/metabolism , Disease Models, Animal , Antioxidants/pharmacology , Myocardium/metabolism , Myocardium/pathology
6.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731418

ABSTRACT

Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.


Subject(s)
Cisplatin , Inflammation , Oxidative Stress , Papaverine , Cisplatin/adverse effects , Papaverine/pharmacology , Oxidative Stress/drug effects , Animals , Rats , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Humans , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Male , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Protective Agents/pharmacology , Antioxidants/pharmacology , Cytokines/metabolism , Computer Simulation , Biomarkers
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732098

ABSTRACT

Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.


Subject(s)
Colon , Metal Nanoparticles , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Silver , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Male , Rats , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Administration, Oral , Inflammation/chemically induced , Inflammation/metabolism , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects
8.
Biotech Histochem ; 99(3): 147-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644776

ABSTRACT

The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-ß (TGF-ß), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.


Subject(s)
Apoptosis , Gallic Acid , Indomethacin , Inflammation , Oxidative Stress , Stomach Ulcer , Animals , Indomethacin/pharmacology , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Male , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Esomeprazole/pharmacology
9.
Chemosphere ; 355: 141813, 2024 May.
Article in English | MEDLINE | ID: mdl-38575082

ABSTRACT

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.


Subject(s)
Microplastics , Polyethylene Terephthalates , Humans , Polyethylene Terephthalates/toxicity , Polymers , Inflammation/chemically induced , Oxidative Stress , Autophagy , Plastics , Polyethylene
10.
Biomed Pharmacother ; 174: 116549, 2024 May.
Article in English | MEDLINE | ID: mdl-38593701

ABSTRACT

This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1ß levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1ß levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.


Subject(s)
Down-Regulation , Galactose , Methylamines , Microglia , Receptors, Purinergic P2Y12 , Animals , Rats , Aging/metabolism , Down-Regulation/drug effects , Galactose/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/metabolism , Methylamines/pharmacology , Microglia/drug effects , Microglia/metabolism , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Sprague-Dawley , Receptors, Purinergic P2Y12/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
11.
Int J Biol Macromol ; 267(Pt 1): 131482, 2024 May.
Article in English | MEDLINE | ID: mdl-38599423

ABSTRACT

The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Dextran Sulfate/adverse effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Pyrus/chemistry , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Digestion/drug effects , Male , NF-kappa B/metabolism
12.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674081

ABSTRACT

Marrubiin is a diterpene with a long history of a wide range of biological activities. In this study, the anti-inflammatory effects of marrubiin were investigated using several in vitro and in vivo assays. Marrubiin inhibited carrageenan-induced peritoneal inflammation by preventing inflammatory cell infiltration and peritoneal mast cell degranulation. The anti-inflammatory activity was further demonstrated by monitoring a set of biochemical parameters, showing that the peritoneal fluid of animals treated with marrubiin had lower levels of proteins and lower myeloperoxidase activity compared with the fluid of animals that were not treated. Marrubiin exerted the most pronounced cytotoxic activity towards peripheral mononuclear cells, being the main contributors to peritoneal inflammation. Additionally, a moderate lipoxygenase inhibition activity of marrubiin was observed.


Subject(s)
Anti-Inflammatory Agents , Carrageenan , Diterpenes , Mast Cells , Animals , Carrageenan/adverse effects , Mice , Diterpenes/pharmacology , Mast Cells/drug effects , Mast Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/metabolism , Peritonitis/pathology , Male , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/pathology , Cell Degranulation/drug effects , Peroxidase/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
13.
Int J Biol Macromol ; 267(Pt 1): 131241, 2024 May.
Article in English | MEDLINE | ID: mdl-38574929

ABSTRACT

Biological macromolecules identified in albumen were found benefit to intestinal health, whether albumen contains exosomes and function of their cargos in intestinal inflammation remain unknown. This study aimed to investigate characteristics and cargos of albumen exosomes, as well as their potential roles in alleviating inflammation in intestinal epithelial cells. Our results demonstrated that albumen contains exosomes that are cup-shaped morphology vesicles with diameter ranging from 50 to 200 nm. There were 278 miRNAs and 45 proteins with higher expression levels in albumen exosomes, and they were mainly involved in immune responses and programmed cell death pathways, including apoptosis and p53 signaling pathway. LPS induced overexpression of pro-inflammatory cytokines IL-1ß and TNF-α and excessive apoptosis, which could be reversed by albumen exosomes. The beneficial effects of exosomes could be mainly attributed to miRNA cargos and their inhibition on inflammatory response signaling pathways (p53 and NF-κB pathways). Mechanically, exosome miR-22 targeted ATM and inhibited p53/NF-κB pathway, alleviating LPS-induced overexpression of Caspase-3 and Bax, and inflammatory response. Collectively, albumen exosomes alleviate inflammation of intestinal epithelial cells via miR-22/ATM/p53/NF-κB axis and these findings may provide theoretical basis to the potential application of albumen exosomes for intestinal inflammation.


Subject(s)
Epithelial Cells , Exosomes , Inflammation , Lipopolysaccharides , MicroRNAs , NF-kappa B , Signal Transduction , Tumor Suppressor Protein p53 , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Signal Transduction/drug effects , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced , NF-kappa B/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Apoptosis/drug effects , Animals , Cell Line
14.
Ecotoxicol Environ Saf ; 277: 116337, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640798

ABSTRACT

The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/ß-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/ß-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/ß catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.


Subject(s)
Cadmium , Intestinal Mucosa , Mice, Inbred BALB C , Wnt Signaling Pathway , Animals , Male , Wnt Signaling Pathway/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Cadmium/toxicity , Inflammation/chemically induced , Inflammation/pathology , beta Catenin/metabolism , Intestines/drug effects , Intestines/pathology
15.
Sci Rep ; 14(1): 9161, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644412

ABSTRACT

Water bodies are highly pollution-prone areas in which mercury (Hg) is considered as a major menace to aquatic organisms. However, the information about the toxicity of mercuric chloride (HgCl2) in a vital organ such as the liver of fish is still inadequate. This study aimed to assess the impact of mercuric chloride (HgCl2) exposure on the liver of Channa punctata fish over 15, 30, and 45 days, at two different concentrations (0.039 mg/L and 0.078 mg/L). Mercury is known to be a significant threat to aquatic life, and yet, information regarding its effects on fish liver remains limited. The results of this study demonstrate that exposure to HgCl2 significantly increases oxidative stress markers, such as lipid peroxidation (LPO) and protein carbonyls (PC), as well as the levels of serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in the fish. Additionally, the transcriptional and protein analysis of specific genes and molecules associated with necroptosis and inflammation, such as ABCG2, TNF α, Caspase 3, RIPK 3, IL-1ß, Caspase-1, IL-18, and RIPK1, confirm the occurrence of necroptosis and inflammation in the liver. Histopathological and ultrastructural examinations of the liver tissue further reveal a significant presence of liver steatosis. Interestingly, the upregulation of PPARα suggests that the fish's body is actively responding to counteract the effects of liver steatosis. This study provides a comprehensive analysis of oxidative stress, biochemical changes, gene expression, protein profiles, and histological findings in the liver tissue of fish exposed to mercury pollution in freshwater environments.


Subject(s)
Fatty Liver , Inflammation , Liver , Mercuric Chloride , Oxidative Stress , Water Pollutants, Chemical , Animals , Oxidative Stress/drug effects , Mercuric Chloride/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Water Pollutants, Chemical/toxicity , Fatty Liver/chemically induced , Fatty Liver/metabolism , Fatty Liver/pathology , Lipid Peroxidation/drug effects , Fishes/metabolism , Channa punctatus
16.
Environ Int ; 186: 108631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588609

ABSTRACT

Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.


Subject(s)
Autophagy , Inflammasomes , Inflammation , Methylmercury Compounds , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Methylmercury Compounds/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/drug effects , Microglia/metabolism , Autophagy/drug effects , Mice , Inflammasomes/metabolism , Animals , Inflammation/chemically induced , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects
17.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Article in English | MEDLINE | ID: mdl-38563049

ABSTRACT

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Subject(s)
Acute Kidney Injury , Ginsenosides , Sepsis , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Lipopolysaccharides/toxicity , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/chemically induced , Sepsis/complications , Sepsis/drug therapy , Apoptosis
18.
J Hazard Mater ; 470: 134177, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565010

ABSTRACT

Perfluorooctane sulfonates (PFOS) are the persistent organic pollutants. In the present study, 0, 0.3, or 3-mg/kg PFOS were administered to pregnant mice from GD 11 to GD 18. The histopathology of liver and intestine, serum and hepatic lipid levels, lipid metabolism related genes, and gut microbiota were examined in adult female offspring. The results suggested that maternal PFOS exposure increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and induced F4/80+ macrophage infiltration in adult female offspring, in addition to the elevation of TNF-α and IL-1ß mRNA levels in low-dose and high-dose groups, respectively. Furthermore, maternal exposure to PFOS increased serum triglyceride (TG) and hepatic total cholesterol (TC) levels, which was associated with the alteration of the process of fatty acid transport and ß-oxidation, TG synthesis and transport, cholesterol synthesis and excretion in the liver. The AMPK/mTOR/autophagy signaling was also inhibited in the liver of adult female offspring. Moreover, changes in gut microbiota were also related to lipid metabolism, especially for the Desulfovibrio, Ligilactobacillus, Enterorhabdus, HT002 and Peptococcaceae_unclassified. Additionally, maternal exposure to PFOS decreased mRNA expressions of the tight junction protein and AB+ goblet cells in the colon, while increasing the overproduction of lipopolysaccharides (LPS) and F4/80+ macrophage infiltration. Collectively, maternal PFOS exposure induced liver lipid accumulation and inflammation, which strongly correlated with the disruption of the gut-liver axis and autophagy in adult female offspring, highlighting the persistent adverse effects in offspring exposed to PFOS.


Subject(s)
Alkanesulfonic Acids , Autophagy , Fluorocarbons , Gastrointestinal Microbiome , Lipid Metabolism , Liver , Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Fluorocarbons/toxicity , Female , Liver/drug effects , Liver/metabolism , Pregnancy , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Alkanesulfonic Acids/toxicity , Autophagy/drug effects , Maternal Exposure/adverse effects , Inflammation/chemically induced , Mice , Male
19.
J Headache Pain ; 25(1): 50, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565987

ABSTRACT

BACKGROUND: Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS: We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1ß, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS: At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS: Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.


Subject(s)
Benzofurans , Calcitonin Gene-Related Peptide , Migraine Disorders , Mice , Animals , Calcitonin Gene-Related Peptide/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Neuroinflammatory Diseases , Reactive Oxygen Species , Photophobia , Mice, Inbred C57BL , Oxidative Stress/physiology , Nitroglycerin/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism
20.
Chem Biol Drug Des ; 103(4): e14519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570708

ABSTRACT

Kaempferol (KPR), a flavonoid compound found in various plants and foods, has garnered attention for its anti-inflammatory, antioxidant, and anticancer properties. In preliminary studies, KPR can modulate several signaling pathways involved in inflammation, making it a candidate for treating cholecystitis. This study aimed to explore the effects and mechanisms of KPR on lipopolysaccharide (LPS)-induced human gallbladder epithelial cells (HGBECs). To assess the impact of KPR on HGBECs, the HGBECs were divided into control, KPR, LPS, LPS + KPR, and LPS + UDCA groups. Cell viability and cytotoxicity were evaluated by MTT assay and lactate dehydrogenase (LDH) assay, respectively, and concentrations of KPR (10-200 µM) were tested. LPS-induced inflammatory responses in HGBECs were to create an in vitro model of cholecystitis. The key inflammatory markers (IL-1ß, IL-6, and TNF-α) levels were quantified using ELISA, The modulation of the MAPK/NF-κB signaling pathway was measured by western blot using specific antibodies against pathway components (p-IκBα, IκBα, p-p65, p65, p-JNK, JNK, p-ERK, ERK, p-p38, and p38). The cell viability and LDH levels in HGBECs were not significantly affected by 50 µM KPR, thus it was selected as the optimal KPR intervention concentration. KPR increased the viability of LPS-induced HGBECs. Additionally, KPR inhibited the inflammatory factors level (IL-1ß, IL-6, and TNF-α) and protein expression (iNOS and COX-2) in LPS-induced HGBECs. Furthermore, KPR reversed LPS-induced elevation of p-IκBα/IκBα, p-p65/p65, p-JNK/JNK, p-ERK/ERK, and p-p38/p38 ratios. KPR attenuates the LPS-induced inflammatory response in HGBECs, possibly by inhibiting MAPK/NF-κB signaling.


Subject(s)
Cholecystitis , NF-kappa B , Humans , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Kaempferols/pharmacology , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Epithelial Cells/metabolism , MAP Kinase Signaling System
SELECTION OF CITATIONS
SEARCH DETAIL
...