Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118253

ABSTRACT

Hemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCE The glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA's ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.


Subject(s)
Cholesterol/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H7N1 Subtype/growth & development , Virus Replication , Amino Acid Motifs , Animals , Binding Sites , DNA Mutational Analysis , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N1 Subtype/genetics , Madin Darby Canine Kidney Cells , Protein Binding , Reverse Genetics
2.
Virol J ; 15(1): 55, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587792

ABSTRACT

BACKGROUND: Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. METHODS: To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. RESULTS: The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L- 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. CONCLUSIONS: Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.


Subject(s)
Influenza A Virus, H7N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/pathogenicity , Influenza in Birds/virology , RNA-Binding Motifs/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Amino Acid Substitution , Animals , Cell Line , Chick Embryo , Chickens , Disease Models, Animal , Dogs , Gene Expression , Gene Expression Regulation, Viral , Influenza A Virus, H7N1 Subtype/genetics , Madin Darby Canine Kidney Cells , RNA-Binding Motifs/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/genetics , Viral Proteins/biosynthesis , Virulence/genetics
3.
Vaccine ; 36(22): 3101-3111, 2018 05 24.
Article in English | MEDLINE | ID: mdl-28571695

ABSTRACT

The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×106cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains.


Subject(s)
Cell Culture Techniques/methods , Cell Line , Orthomyxoviridae/growth & development , Virus Cultivation/methods , Virus Replication , Animals , Bioreactors , Ducks , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N8 Subtype/growth & development , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H5N2 Subtype/growth & development , Influenza A Virus, H5N2 Subtype/physiology , Influenza A Virus, H7N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/physiology , Influenza Vaccines , Orthomyxoviridae/physiology
4.
J Virol ; 90(1): 400-11, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26491158

ABSTRACT

UNLABELLED: In 1999, after circulation for a few months in poultry in Italy, low-pathogenic (LP) avian influenza (AI) H7N1 virus mutated into a highly pathogenic (HP) form by acquisition of a unique multibasic cleavage site (mCS), PEIPKGSRVRR*GLF (asterisk indicates the cleavage site), in the hemagglutinin (HA) and additional alterations with hitherto unknown biological function. To elucidate these virulence-determining alterations, recombinant H7N1 viruses carrying specific mutations in the HA of LPAI A/chicken/Italy/473/1999 virus (Lp) and HPAI A/chicken/Italy/445/1999 virus (Hp) were generated. Hp with a monobasic CS or carrying the HA of Lp induced only mild or no disease in chickens, thus resembling Lp. Conversely, Lp with the HA of Hp was as virulent and transmissible as Hp. While Lp with a multibasic cleavage site (Lp_CS445) was less virulent than Hp, full virulence was exhibited when HA2 was replaced by that of Hp. In HA2, three amino acid differences consistently detected between LP and HP H7N1 viruses were successively introduced into Lp_CS445. Q450L in the HA2 stem domain increased virulence and transmission but was detrimental to replication in cell culture, probably due to low-pH activation of HA. A436T and/or K536R restored viral replication in vitro and in vivo. Viruses possessing A436T and K536R were observed early in the HPAI outbreak but were later superseded by viruses carrying all three mutations. Together, besides the mCS, stepwise mutations in HA2 increased the fitness of the Italian H7N1 virus in vivo. The shift toward higher virulence in the field was most likely gradual with rapid optimization. IMPORTANCE: In 1999, after 9 months of circulation of low-pathogenic (LP) avian influenza virus (AIV), a devastating highly pathogenic (HP) H7N1 AIV emerged in poultry, marking the largest epidemic of AIV reported in a Western country. The HPAIV possessed a unique multibasic cleavage site (mCS) complying with the minimum motif for HPAIV. The main finding in this report is the identification of three mutations in the HA2 domain that are required for replication and stability, as well as for virulence, transmission, and tropism of H7N1 in chickens. In addition to the mCS, Q450L was required for full virulence and transmissibility of the virus. Nonetheless, it was detrimental to virus replication and required A436T and/or K536R to restore replication, systemic spread, and stability. These results are important for better understanding of the evolution of highly pathogenic avian influenza viruses from low-pathogenic precursors.


Subject(s)
Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Influenza A Virus, H7N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/genetics , Influenza in Birds/pathology , Influenza in Birds/virology , Mutation, Missense , Animals , Chickens , Italy , Mutant Proteins/genetics , Mutant Proteins/metabolism , Recombination, Genetic , Reverse Genetics , Virulence
5.
Antiviral Res ; 120: 89-100, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26022200

ABSTRACT

Antiviral medication is used for the treatment of severe influenza infections, of which the neuraminidase inhibitors (NAIs) are the most effective drugs, approved so far. Here, we investigated the antiviral efficacy of the peptidomimetic furin inhibitor MI-701 in combination with oseltamivir carboxylate and ribavirin against the infection of highly pathogenic avian influenza viruses (HPAIV) that are activated by the host protease furin. Cell cultures infected with the strains A/Thailand/1(KAN-1)/2004 (H5N1) and A/FPV/Rostock/1934 (H7N1) were treated with each agent alone, or in double and triple combinations. MI-701 alone achieved a concentration-dependent reduction of virus propagation. Double treatment of MI-701 with oseltamivir carboxylate and triple combination with ribavirin showed synergistic inhibition and a pronounced delay of virus propagation. MI-701 resistant mutants were not observed. Emergence of NA mutation H275Y conferring high oseltamivir resistance was significantly delayed in the presence of MI-701. Our data indicate that combination with a potent furin inhibitor significantly enhances the therapeutic efficacy of conventional antivirals drugs against HPAIV infection.


Subject(s)
Antiviral Agents/metabolism , Furin/antagonists & inhibitors , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H7N1 Subtype/drug effects , Oseltamivir/metabolism , Peptidomimetics/metabolism , Ribavirin/metabolism , Animals , Dogs , Drug Resistance, Viral , Drug Synergism , Influenza A Virus, H5N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/growth & development , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Mutant Proteins/genetics , Mutation, Missense , Neuraminidase/genetics , Viral Proteins/genetics
6.
Vaccine ; 33(2): 374-81, 2015 Jan 03.
Article in English | MEDLINE | ID: mdl-25448099

ABSTRACT

A cell culture-based vaccine production system is preferred for the large-scale production of influenza vaccines and has advantages for generating vaccines against highly pathogenic influenza A viruses. Vero cells have been widely used in human vaccine manufacturing, and the safety of these cells has been well demonstrated. However, the most commonly used influenza-vaccine donor virus, A/Puerto Rico/8/1934 (PR8) virus, does not grow efficiently in Vero cells. Therefore, we adapted the PR8 virus to Vero cells by continuous passaging, and a high-growth strain was obtained after 20 passages. Sequence analysis and virological assays of the adapted strain revealed that mutations in four viral internal genes (NP, PB1, PA and NS1) were sufficient for adaptation. The recombinant virus harboring these mutations (PR8-4mut) displayed accelerated viral transport into the nucleus and increased RNP activity. Importantly, the PR8-4mut could serve as a backbone donor virus to support the growth of the H7N1, H9N2 and H5N1 avian viruses and the H1N1 and H3N2 human viruses in Vero cells without changing its pathogenicity in either chicken embryos or mice. Thus, our work describes the generation of a Vero-adapted, high-yield PR8-4mut virus that may serve as a promising candidate for an influenza-vaccine donor virus.


Subject(s)
Influenza A virus/growth & development , Influenza A virus/immunology , Reassortant Viruses/genetics , Serial Passage , Vero Cells/virology , Virus Cultivation , Adaptation, Physiological , Animals , Chick Embryo , Chickens/virology , Chlorocebus aethiops , Genes, Viral , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/growth & development , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/growth & development , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza Vaccines/analysis , Mice , Mutation , Reassortant Viruses/growth & development , Ribonucleoproteins/metabolism , Sequence Analysis , Viral Proteins/metabolism
7.
Appl Environ Microbiol ; 78(9): 3280-5, 2012 May.
Article in English | MEDLINE | ID: mdl-22389376

ABSTRACT

Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and 6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage 6, while bacteriophage MS2 proved too thermoresistant to be considered a valuable indicator organism for avian influenza virus during thermal treatments. Guidelines for treatment of litter in the event of emergency composting can be formulated based on the inactivation rates obtained in the study.


Subject(s)
Bacteriophage phi 6/physiology , Influenza A Virus, H7N1 Subtype/physiology , Levivirus/physiology , Microbial Viability , Sanitation/methods , Soil Microbiology , Soil , Bacteriophage phi 6/growth & development , Influenza A Virus, H7N1 Subtype/growth & development , Levivirus/growth & development , Manure/virology , Temperature
8.
Epidemics ; 2(1): 29-35, 2010 Mar.
Article in English | MEDLINE | ID: mdl-21352774

ABSTRACT

We analysed the between-farm transmission of the H7N1 highly pathogenic avian influenza virus that disrupted the Italian poultry production in the 1999-2000 epidemic with a SEIR model with a spatial transmission kernel, accounting for the containment measures actually undertaken. We found significant differences in susceptibility between species and a reduction in transmissibility after the first phase. We performed simulations to assess the effectiveness of the implemented and new control measures. The most effective measure was the ban on restocking. An earlier start of pre-emptive culling promotes eradication; restricted pre-emptive culling delays eradication but causes lower losses.


Subject(s)
Influenza A Virus, H7N1 Subtype/growth & development , Influenza in Birds/epidemiology , Poultry , Animals , Epidemics , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza in Birds/virology , Italy/epidemiology , Models, Biological , Space-Time Clustering , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...