Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.324
Filter
1.
PLoS One ; 19(5): e0300187, 2024.
Article in English | MEDLINE | ID: mdl-38722866

ABSTRACT

Leaf-cutting ants are the most important pests in several cropping systems in the Neotropics. Granulated baits containing active ingredients, considered hazardous by the Stockholm Convention, are the usual method to control these ants. Isocycloseram is a new insecticide molecule with high safety margin for mammals, but without registration for the ants in general. Thus, this study investigated the effectiveness of granulated baits with isocycloseram in leaf-cutting ants control under laboratory and field conditions. Initially, the mortality of Atta sexdens workers, fed with dehydrated citrus pulp paste containing different concentrations of isocycloseram was evaluated in the laboratory for 21 days, for toxicological classification. Subsequently, the loading, devolution, and incorporation of baits with different concentrations of isocycloseram and the mortality of A. sexdens colonies were evaluated in the laboratory. After that, the percentages of loading and devolution of baits, foraging activity, and colony mortality treated with 0.05, 0.1, 0.2, and 0.3% of isocycloseram were evaluated for the species A. sexdens, A. laevigata, and Acromyrmex lundii in field conditions. All concentrations of isocycloseram killed more than 15% of ants in 24 h and more than 90% in 21 days in the laboratory, being classified as a fast-acting and highly effective active ingredient. Baits with 0.001 to 0.03% of isocycloseram were highly loaded and exhibited low rate of devolution. The mortality of A. sexdens colony was higher at concentrations between 0.075 and 0.3%, in the laboratory. Baits containing isocycloseram at concentrations of 0.2 and 0.3% were highly loaded, presented low devolution rates, and were highly efficient in controlling A. sexdens, A. laevigata, and A. lundii in the field, at dosages of 6, 10, and 12 g/m² of nest. This is the first report of the use of isocycloseram against leaf-cutting ants, contributing to the development of efficient and toxicologically safer ant baits.


Subject(s)
Ants , Insecticides , Animals , Ants/drug effects , Insecticides/pharmacology , Insect Control/methods
2.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
3.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717262

ABSTRACT

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Subject(s)
Animal Distribution , Climate Change , Introduced Species , Animals , Hemiptera/physiology , Insect Control/methods
4.
BMC Ecol Evol ; 24(1): 60, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734594

ABSTRACT

BACKGROUND: Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS: To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS: We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS: These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.


Subject(s)
Drosophila , Feeding Behavior , Insect Control , Animals , Drosophila/physiology , Insect Control/methods , Feeding Behavior/physiology , Insecticides/pharmacology , Insecticides/administration & dosage , Rubus , Fragaria , Female , Seasons
5.
PLoS Negl Trop Dis ; 18(4): e0011578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626189

ABSTRACT

BACKGROUND: The insecticide-treated baits known as Tiny Targets are one of the cheapest means of controlling riverine species of tsetse flies, the vectors of the trypanosomes that cause sleeping sickness in humans. Models of the efficacy of these targets deployed near rivers are potentially useful in planning control campaigns and highlighting the principles involved. METHODS AND PRINCIPAL FINDINGS: To evaluate the potential of models, we produced a simple non-seasonal model of the births, deaths, mobility and aging of tsetse, and we programmed it to simulate the impact of seven years of target use against the tsetse, Glossina fuscipes fuscipes, in the riverine habitats of NW Uganda. Particular attention was given to demonstrating that the model could explain three matters of interest: (i) good control can be achieved despite the degradation of targets, (ii) local elimination of tsetse is impossible if invasion sources are not tackled, and (iii) with invasion and target degradation it is difficult to detect any effect of control on the age structure of the tsetse population. CONCLUSIONS: Despite its simplifications, the model can assist planning and teaching, but allowance should be made for any complications due to seasonality and management challenges associated with greater scale.


Subject(s)
Insect Control , Insecticides , Tsetse Flies , Tsetse Flies/physiology , Tsetse Flies/parasitology , Animals , Insect Control/methods , Uganda , Insecticides/pharmacology , Humans , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/epidemiology , Insect Vectors/parasitology , Insect Vectors/physiology
6.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582574

ABSTRACT

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Subject(s)
Seeds , Tephritidae , Male , Animals , Mice , Phylogeny , In Situ Hybridization, Fluorescence , Tephritidae/genetics , Insect Control/methods , Spermatogenesis/genetics , Fertility/genetics , Heat-Shock Response
7.
Pestic Biochem Physiol ; 200: 105838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582600

ABSTRACT

Diaspididae are one of the most serious small herbivorous insects with piercing-sucking mouth parts and are major economic pests as they attack and destroy perennial ornamentals and food crops. Chemical control is the primary management approach for armored scale infestation. However, chemical insecticides do not possess selectivity in action and not always effective enough for the control of armored scale insects. Our previous work showed that green oligonucleotide insecticides (olinscides) are highly effective against armored and soft scale insects. Moreover, olinscides possess affordability, selectivity in action, fast biodegradability, and a low carbon footprint. Insect pest populations undergo microevolution and olinscides should take into account the problem of insecticide resistance. Using sequencing results, it was found that in the mixed populations of insect pests Dynaspidiotus britannicus Newstead and Aonidia lauri Bouche, predominates the population of A. lauri. Individuals of A. lauri comprised for 80% of individuals with the sequence 3'-ATC-GTT-GGC-AT-5' in the 28S rRNA site, and 20% of the population comprised D. britannicus individuals with the sequence 3'-ATC-GTC-GGT-AT-5'. We created olinscides Diasp80-11 (5'-ATG-CCA-ACG-AT-3') and Diasp20-11 (5'-ATA-CCG-ACG-AT-3') with perfect complementarity to each of the sequences. Mortality of insects on the 14th day comprised 98.19 ± 3.12% in Diasp80-11 group, 64.66 ± 0.67% in Diasp20-11 group (p < 0.05), and 3.77 ± 0.94% in the control group. Results indicate that for maximum insecticidal effect it is necessary to use an oligonucleotide insecticide that corresponds to the dominant species. Mortality in Diasp80-11 group was accompanied with significant decrease in target 28S rRNA concentration and was 8.44 ± 0.14 and 1.72 ± 0.36 times lower in comparison with control (p < 0.05) on the 10th and 14th days, respectively. We decided to make single nucleotide substitutions in Diasp20-11 olinscide to understand which nucleotide will play the most important role in insecticidal effect. We created three sequences with single nucleotide transversion substitutions at the 5'-end - Diasp20(5')-11 (A to T), 3'-end - Diasp20(3')-11 (T to A), and in the middle of the sequence - Diasp20(6)-11 (6th nitrogenous base of the sequence; G to C), respectively. As a result, mortality of mixed population of the field experiment decreased and comprised 53.89 ± 7.25% in Diasp20(5')-11 group, 40.68 ± 4.33% in Diasp20(6)-11 group, 35.74 ± 5.51% in Diasp20(3')-11 group, and 3.77 ± 0.94% in the control group on the 14th day. Thus, complementarity of the 3'-end nucleotide to target 28S rRNA was the most important for pronounced insecticidal effect (significance of complementarity of nucleotides for insecticidal effect: 5' nt < 6 nt < 3' nt). As was found in our previous research works, the most important rule to obtain maximum insecticidal effect is complete complementarity to the target rRNA sequence and maximum coverage of target sequence in insect pest populations. However, in this article we also show that the complementarity of 3'-end is a second important factor for insecticidal potential of olinscides. Also in this article we propose 2-step DNA containment mechanism of action of olinscides, recruiting RNase H. The data obtained indicate the selectivity of olinscides and at the same time provide a simple and flexible platform for the creation of effective plant protection products, based on antisense DNA oligonucleotides.


Subject(s)
Hemiptera , Insecticides , Humans , Animals , Insecticides/pharmacology , Oligonucleotides , Nucleotides , RNA, Ribosomal, 28S , Insecta/genetics , Insect Control/methods
8.
J Math Biol ; 88(6): 73, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679652

ABSTRACT

Insect growth regulators (IGRs) have been developed as effective control measures against harmful insect pests to disrupt their normal development. This study is to propose a mathematical model to evaluate the cost-effectiveness of IGRs for pest management. The key features of the model include the temperature-dependent growth of insects and realistic impulsive IGRs releasing strategies. The impulsive releases are carefully modeled by counting the number of implements during an insect's temperature-dependent development duration, which introduces a surviving probability determined by a product of terms corresponding to each release. Dynamical behavior of the model is illustrated through dynamical system analysis and a threshold-type result is established in terms of the net reproduction number. Further numerical simulations are performed to quantitatively evaluate the effectiveness of IGRs to control populations of harmful insect pests. It is interesting to observe that the time-changing environment plays an important role in determining an optimal pest control scheme with appropriate release frequencies and time instants.


Subject(s)
Computer Simulation , Insecta , Mathematical Concepts , Models, Biological , Pest Control, Biological , Animals , Insecta/growth & development , Pest Control, Biological/methods , Pest Control, Biological/statistics & numerical data , Juvenile Hormones , Temperature , Insect Control/methods , Cost-Benefit Analysis
9.
PLoS One ; 19(3): e0300866, 2024.
Article in English | MEDLINE | ID: mdl-38512951

ABSTRACT

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Subject(s)
Eugenol/analogs & derivatives , Insecticides , Tephritidae , Animals , Male , Insect Control/methods , Insecticides/pharmacology , Drosophila
10.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38327015

ABSTRACT

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , RNA Interference , RNA, Double-Stranded , Aphids/genetics , Animals , RNA, Double-Stranded/genetics , Coleoptera/genetics , Pest Control, Biological/methods , Insect Control/methods , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology
11.
Pest Manag Sci ; 80(6): 2668-2678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411319

ABSTRACT

BACKGROUND: The Angoumois grain moth, Sitotroga cerealella, is a destructive pest of maize, wheat, and rice, causing economic losses and threatening food security. This study aimed to develop and characterize microcapsules of mesoporous silica nanospheres (MSN) and cyclodextrin-modified mesoporous silica nanospheres (CDMSN) containing two aldehydes, nonanal and decanal, found in plant essential oils, to assess their attractiveness to S. cerealella populations. RESULTS: Microcapsules with 2:1 ratio of nonanal and decanal exhibited an average encapsulation efficiency of 39.82% for MSN loaded with nonanal and decanal (MSN-ND) and 46.10% for CDMSN loaded with nonanal and decanal (CDMSN-ND). They have an elliptical shape with particle sizes of 115 nm for MSN and 175 nm for CDMSN. Gas chromatography-mass spectrometry analysis revealed in vitro release of nonanal in MSN at 96.24% and decanal at 96.42% by the 36th day. CDMSN showed releases of 93.83% for nonanal and 93.74% for decanal by the 50th day. CDMSN-ND attracted adult S. cerealella for 43 days, while MSN-ND remained effective for 29 days. In mass trapping assays in simulated grain warehouse, both MSN-ND and CDMSN-ND trapped over 50% of the adult population within 7 days, significantly reducing grain infestation rates below 10% by inhibiting F1 adult emergence. At temperatures ranging from 20 °C to 35 °C, both microcapsules exhibited significant and effective attraction rates for S. cerealella. Stored wheat seeds treated with CDMSN and CDMSN-ND over 1 year showed no significant differences in key germination parameters. CONCLUSION: Microencapsulated nonanal and decanal offer a promising, sustainable approach for controlling S. cerealella infestation in stored grains, contributing to global food security. © 2024 Society of Chemical Industry.


Subject(s)
Capsules , Cyclodextrins , Edible Grain , Silicon Dioxide , Silicon Dioxide/chemistry , Animals , Cyclodextrins/chemistry , Edible Grain/chemistry , Aldehydes/chemistry , Moths/growth & development , Insect Control/methods , Food Storage
12.
J Econ Entomol ; 117(2): 524-528, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38402493

ABSTRACT

Cabbage maggot (CM) (Delia radicum L.) is a devastating pest of Brassicaceae crops throughout the world, including the Willamette Valley in western Oregon, USA. Chemical control methods for this pest are limited, with reduction or elimination of chlorpyrifos tolerances and expensive alternative chemistries; therefore, there is an increasing need for novel chemical control options. Adult feeding, a strategy used with insecticide-treated baits for other fly species, has yet to be tested as an option for a chemical control delivery for cabbage maggot. Treated bait can exploit the feeding behavior of CM and expose them to insecticides in a field setting. In this study, the efficacy of 5 organic and 5 conventional insecticides was compared in laboratory bioassays of treated bait stations in Aurora, Oregon, USA. The mortality of adult female cabbage maggot flies was assessed over time following ingestion of insecticides. Among organic insecticides tested, spinosad was highly effective 4 h after exposure, while pyrethrins + azadirachtin was moderately effective following 18 h after exposure. Flies exposed to conventional-use pesticides zeta-cypermethrin and bifenthrin had high mortality 1.75 h after exposure, while spinetoram had moderate efficacy 2 h after exposure. Insecticides identified with high or moderate efficacy may have the potential for use in baits or lure formulations that could be used to augment the control of cabbage maggots in field settings.


Subject(s)
Brassica , Diptera , Insecticides , Pesticides , Female , Animals , Larva , Eating , Insect Control/methods
13.
J Insect Sci ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38340047

ABSTRACT

Chemical-based interventions are mostly used to control insects that are harmful to human health and agriculture or that simply cause a nuisance. An overreliance on these insecticides however raises concerns for the environment, human health, and the development of resistance, not only in the target species. As such, there is a critical need for the development of novel nonchemical technologies to control insects. Electrocution traps using UV light as an attractant are one classical nonchemical approach to insect control but lack the specificity necessary to target only pest insects and to avoid harmless or beneficial species. Here we review the fundamental physics behind electric fields (EFs) and place them in context with electromagnetic fields more broadly. We then focus on how novel uses of strong EFs, some of which are being piloted in the field and laboratory, have the potential to repel, capture, or kill (electrocute) insects without the negative side effects of other classical approaches. As EF-insect science remains in its infancy, we provide recommendations for future areas of research in EF-insect science.


Subject(s)
Insect Control , Animals , Insect Control/methods , Insecticides/toxicity , Ultraviolet Rays
14.
Bull Entomol Res ; 114(2): 180-189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327068

ABSTRACT

Drosophila suzukii (Matsumura) is an exotic pest of economic importance that affects several soft-skinned fruits in Mexico. Previously, we found that yellow or yellow-green rectangular cards inside a transparent trap baited with attractants improved D. suzukii capture. In this study, we evaluated the influence of rectangular cards with different yellow shades inside a transparent multi-hole trap baited with apple cider vinegar (ACV) on D. suzukii capture in the field. Second, we tested whether ACV-baited traps with cards of other geometric shapes affected D. suzukii catches compared to traps with rectangular cards. Third, we evaluated the effects of commercial lures combined with a more efficient visual stimulus from previous experiments on trapping D. suzukii flies. We found that ACV-baited traps plus a yellow-shaded rectangle card with 67% reflectance at a 549.74 nm dominant wavelength captured more flies than ACV-baited traps with yellow rectangle cards with a higher reflectance. Overall, ACV-baited traps with rectangles and squares caught more flies than did ACV-baited traps without visual stimuli. The traps baited with SuzukiiLURE-Max, ACV and Z-Kinol plus yellow rectangles caught 57, 70 and 101% more flies, respectively, than the traps baited with the lure but without a visual stimulus.


Subject(s)
Drosophila , Insect Control , Animals , Drosophila/physiology , Insect Control/instrumentation , Insect Control/methods , Pheromones/pharmacology , Female , Photic Stimulation , Mexico , Acetic Acid/pharmacology , Male
15.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38318843

ABSTRACT

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Subject(s)
Drosophila , Rubus , Animals , Female , Plant Diseases , Rubus/microbiology , Larva , Fruit/microbiology , Insect Control/methods
16.
Pest Manag Sci ; 80(6): 2577-2586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243837

ABSTRACT

BACKGROUND: The polyphagous mirid bug Apolygus lucorum (Meyer-Dür) and the green leafhopper Empoasca spp. Walsh are small pests that are widely distributed and important pests of many economically important crops, especially kiwis. Conventional monitoring methods are expensive, laborious and error-prone. Currently, deep learning methods are ineffective at recognizing them. This study proposes a new deep-learning-based YOLOv5s_HSSE model to automatically detect and count them on sticky card traps. RESULTS: Based on a database of 1502 images, all images were collected from kiwi orchards at multiple locations and times. We trained the YOLOv5s model to detect and count them and then changed the activation function to Hard swish in YOLOv5s, introduced the SIoU Loss function, and added the squeeze-and-excitation attention mechanism to form a new YOLOv5s_HSSE model. Mean average precision of this model in the test dataset was 95.9%, the recall rate was 93.9% and the frames per second was 155, which are higher than those of other single-stage deep-learning models, such as SSD, YOLOv3 and YOLOv4. CONCLUSION: The proposed YOLOv5s_HSSE model can be used to identify and count A. lucorum and Empoasca spp., and it is a new, efficient and accurate monitoring method. Pest detection will benefit from the broader applications of deep learning. © 2024 Society of Chemical Industry.


Subject(s)
Hemiptera , Heteroptera , Animals , Deep Learning , Insect Control/methods , Image Processing, Computer-Assisted/methods
17.
J Econ Entomol ; 117(2): 480-493, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38262450

ABSTRACT

A series of experiments were carried out to develop a phytosanitary disinfestation protocol to kill Ceratitis capitata (Weidemann) (Mediterranean fruit fly, Diptera: Tephritidae) in 'Hayward' kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang and A.R. Ferguson) and 'Zesy002' kiwifruit (Actinidia chinensis Planch.). Experiments on 4 immature life stages (eggs and 3 larval instars) with treatment durations of between 5 and 18 days showed that third instars were the most tolerant to temperatures around 3 °C, with the lethal time to 99.9968% (probit 9) mortality (LT99.9968) estimated to be 17.3 days (95% confidence interval (CI) 16.4-18.2). Larvae reared and treated in 'Zesy002' were significantly more susceptible to cold treatment than those reared in 'Hayward'. A large-scale trial testing a disinfestation protocol of 3 ±â€…0.5 °C for 18 days treated over 500,000 third-instar C. capitata with no survivors. These results demonstrate that a cold treatment of 3.5 °C or below for 18 days induces C. capitata mortality in kiwifruit at a rate that exceeds 99.9968% with a degree of confidence greater than 99%.


Subject(s)
Actinidia , Ceratitis capitata , Tephritidae , Animals , Insect Control/methods , Cold Temperature , Larva
18.
Neotrop Entomol ; 53(2): 189-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38170367

ABSTRACT

The protection of soft-skinned fruits against Drosophila suzukii has relied primarily on the efficacy of a few synthetic molecules. Despite their short-term efficacy, these molecules can cause environmental pollution, unintendedly affect non-target organisms, and fail to provide sustainable control. The shortfalls of using synthetic pesticides warrant the search for alternatives, such as essential oils extracted from plants, with greater eco-friendlier properties. Here, we chemically characterized and evaluated the toxicity of the essential oil extracted from leaves of Ocotea indecora (Schott) Mez (Lauraceae) against D. suzukii via two exposure pathways (ingestion and contact). We also assessed the selectivity of the essential oil to two predatory natural enemies, Eriopis connexa and Chrysoperla externa and two pollinator bees, Apis mellifera and Partamona helleri. In addition, we conducted in silico predictions to investigate potential interactions between the major compound of the essential oil and the insects' transient receptor potential (TRP) channels. Our chromatographic analysis revealed sesquirosefuran (87%) as the major compound. Higher toxicity to adults of D. suzukii was observed in contact exposure (LC50 = 0.43 µL mL-1) compared to ingestion (LC50 = 0.72 µL mL-1). However, the essential oil did not cause mortality to the non-target organisms tested here, even when applied at 2.20 µL mL-1. Molecular predictions demonstrated that sesquirosefuran binds more stably to the TRP channels of D. suzukii than to those expressed in beneficial arthropods. Collectively, our findings provide the initial framework for the potential use of O. indecora essential oil as a sustainable alternative for managing D. suzukii infestations.


Subject(s)
Arthropods , Insecticides , Ocotea , Oils, Volatile , Animals , Drosophila , Insect Control/methods
19.
J Econ Entomol ; 117(2): 595-600, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38266274

ABSTRACT

Native apple maggot fly, Rhagoletis pomonella, and invasive spotted-wing drosophila, Drosophila suzukii, are key pests of apple and small fruit, respectively, in the United States. Both species are typically managed with standard insecticide applications. However, interest in alternative strategies that result in insecticide reductions has led to evaluations of nonnutritive sugars as toxicants for Drosophila species and development of attracticidal spheres for both species. Here, we evaluated the survivorship of R. pomonella and D. suzukii when provided with standard diets that substituted saccharin, sucralose, aspartame, erythritol, dextrose, or mannitol for the sucrose component and compared them with standard diets and water-only controls for up to 15 days. Presence of erythritol and mannitol significantly decreased survivorship of R. pomonella and erythritol significantly decreased the survivorship of D. suzukii. However, mobility trials following a 2 h exposure to aqueous solutions of each sugar treatment resulted in no strong impact on either species. Survivorship after 30 min exposure to erythritol or mannitol alone, or in combination with varying concentrations of sucrose (serving as a phagostimulant) at 30 min and 24 h were evaluated for both species. Only D. suzukii survivorship was affected with decreased survivorship on erythritol:sucrose solutions of 20:0% and 15:5% for 24 h. Based on all results, erythritol appeared most promising, and was integrated into attracticidal spheres as a toxicant but even at the highest concentration, survivorship remained unaffected for either species, thus making this nonnutritive sugar impractical and ineffective as a toxicant substitute in attracticidal spheres.


Subject(s)
Insecticides , Tephritidae , Animals , Drosophila , Insecticides/pharmacology , Insect Control/methods , Survivorship , Sucrose , Sugars/pharmacology , Erythritol/pharmacology , Mannitol/pharmacology , Diet
20.
J Econ Entomol ; 117(2): 494-499, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38266280

ABSTRACT

Cyclohexanone is a major precursor for nylon production and is also used as a pesticide solvent. In this study, cyclohexanone was evaluated as a fumigant against rice weevil adults, confused flour beetle adults, western flower thrips larvae and adults, spotted wing drosophila adults, and subterranean termite workers. Cyclohexanone fumigation was effective against all 5 insects, and there were considerable variations in susceptibility to cyclohexanone fumigation among the 5 species. At 20 °C, complete control of spotted wing drosophila adults was achieved in 1-h fumigation with 25 µl/l of cyclohexanone and complete control of eastern subterranean termite workers was achieved in 3-h fumigations with 50 µl/l dose of cyclohexanone. Stored-product insects confused flour beetle, and rice weevil adults were more tolerant to cyclohexanone fumigation. Fumigations of 24 h with 75 µl/l dose of cyclohexanone caused 100% mortality of rice weevil adults and 98% mortality of confused flower beetle adults. Even at a 100 µl/l dose, the 24-h fumigations did not achieve 100% mortality of confused flour beetle adults. At 5 °C, complete control of western flower thrips was achieved in 3- and 6-h fumigations with 100 and 50 µl/l doses of cyclohexanone, respectively. Cyclohexanone vapor concentrations were measured using cyclohexanone detector tubes. Vapor concentrations were far below the expected saturation concentration indicating that most cyclohexanone did not exist as vapor in fumigation chambers. The results of effective control of all 5 insect species suggest that cyclohexanone has the potential to be used as a fumigant for postharvest pest control.


Subject(s)
Coleoptera , Insecticides , Isoptera , Pesticides , Thysanoptera , Weevils , Animals , Cyclohexanones/toxicity , Insecticides/pharmacology , Insect Control/methods , Pesticides/pharmacology , Fumigation/methods , Drosophila
SELECTION OF CITATIONS
SEARCH DETAIL
...