Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.890
Filter
1.
Sci Data ; 11(1): 471, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724521

ABSTRACT

We present a de novo transcriptome of the mosquito vector Culex pipiens, assembled by sequences of susceptible and insecticide resistant larvae. The high quality of the assembly was confirmed by TransRate and BUSCO. A mapping percentage until 94.8% was obtained by aligning contigs to Nr, SwissProt, and TrEMBL, with 27,281 sequences that simultaneously mapped on the three databases. A total of 14,966 ORFs were also functionally annotated by using the eggNOG database. Among them, we identified ORF sequences of the main gene families involved in insecticide resistance. Therefore, this resource stands as a valuable reference for further studies of differential gene expression as well as to identify genes of interest for genetic-based control tools.


Subject(s)
Culex , Insecticide Resistance , Larva , Transcriptome , Animals , Culex/genetics , Larva/genetics , Larva/growth & development , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Open Reading Frames
2.
PLoS One ; 19(5): e0303027, 2024.
Article in English | MEDLINE | ID: mdl-38728353

ABSTRACT

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Subject(s)
Aedes , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Pyrethrins/pharmacology , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Insecticide Resistance/genetics , Nitriles/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Dengue/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Female
3.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703356

ABSTRACT

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Subject(s)
Esterases , Insect Proteins , Insecta , Insecticides , Malathion , Animals , Malathion/metabolism , Malathion/chemistry , Malathion/toxicity , Malathion/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insecta/drug effects , Insecticide Resistance/genetics , Inactivation, Metabolic , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism
4.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760849

ABSTRACT

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
5.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
6.
Exp Parasitol ; 261: 108763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704016

ABSTRACT

The brown dog tick or Rhipicephalus sanguineus sensu lato is an ixodid tick, responsible for the dissemination of pathogens that cause canine infectious diseases besides inflicting the direct effects of tick bite. The hot humid climate of Kerala, a south Indian state, is favorable for propagation of tick vectors and acaricides are the main stay of tick control. Though the resistance against synthetic pyrethroids is reported among these species, the status of amitraz resistance in R. sanguineus s. l. in the country is uncertain due to the lack of molecular characterisation data and scarce literature reports. Hence the present study was focused on the phenotypic detection and preliminary genotypic characterisation of amitraz resistance in the R. sanguineus s. l. A modified larval packet test (LPT) on a susceptible isolate was performed to determine the discriminating dose (DD). Further LPT-DD on 35 tick isolates was carried out to detect amitraz resistance robustly, along with that full dose response bioassays on the resistant isolates were performed. The results indicated that amitraz resistance is prevalent with 49 per cent of the samples being resistant. Amplification of exon 3 of octopamine receptor gene from both the susceptible and resistant larval isolates was carried out. Amplicons of ten pooled amitraz susceptible and ten pooled amitraz resistant representative samples were sequenced and analysed, unveiling a total of three novel non-synonymous mutations in the partial coding region at positions V32A, N41D and V58I in phenotypically resistant larval DNA samples. In silico analysis by homology modelling and molecular docking of the mutated and unmutated receptors showed that these mutations had reduced the binding affinity to amitraz. However, lack of mutations in the octopamine receptor gene in three of the pooled low order resistant R. sanguineus s. l. larval samples could be suggestive of other mechanisms associated with amitraz resistance in the region. Hence, further association studies should be carried out to confirm the association of these mutations with target insensitivity in R. sanguineus s. l. ticks, along with exploring the status of metabolic resistance and other mechanisms of resistance.


Subject(s)
Acaricides , Receptors, Biogenic Amine , Rhipicephalus sanguineus , Toluidines , Animals , Toluidines/pharmacology , Receptors, Biogenic Amine/genetics , India , Rhipicephalus sanguineus/genetics , Rhipicephalus sanguineus/drug effects , Acaricides/pharmacology , Larva/genetics , Larva/drug effects , Insecticide Resistance/genetics , Polymorphism, Genetic , Genotype , Dogs , Female , Dog Diseases/parasitology , Molecular Docking Simulation , Amino Acid Sequence , Biological Assay
7.
BMC Biol ; 22(1): 117, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764011

ABSTRACT

BACKGROUND: Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS: The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS: The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.


Subject(s)
Anopheles , Insecticide Resistance , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/genetics , Insecticide Resistance/genetics , Malaria/transmission , Mosquito Vectors/parasitology , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Phenotype , Insecticides/pharmacology , Spatio-Temporal Analysis , Africa South of the Sahara , Female
8.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582836

ABSTRACT

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Subject(s)
Anopheles , Insecticides , Malaria , Nitriles , Pyrethrins , Animals , Insecticides/pharmacology , Anopheles/genetics , Benin , Organophosphates/pharmacology , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance/genetics , Gene Expression Profiling
9.
Sci Rep ; 14(1): 8650, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622230

ABSTRACT

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Insecticide Resistance/genetics , Ghana/epidemiology , Insecticides/pharmacology , Mosquito Control
10.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622750

ABSTRACT

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
11.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594617

ABSTRACT

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Subject(s)
Bacillus thuringiensis , Moths , Pesticides , Animals , Larva/genetics , Larva/metabolism , Glycine max/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Moths/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Chromosomes/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Insecticide Resistance/genetics
12.
Sci Total Environ ; 930: 172425, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38643874

ABSTRACT

Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.


Subject(s)
Aedes , Chlorpyrifos , Insecticides , Animals , Chlorpyrifos/toxicity , Aedes/drug effects , Insecticides/toxicity , Insecticide Resistance/genetics , Pesticide Residues
14.
J Invertebr Pathol ; 204: 108101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574951

ABSTRACT

The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance. However other studies have found that knocking out this protein does not result in a significant level of resistance. In this study we wanted to test the hypothesis that constitutive receptor downregulation is the major cause of Bt resistance in P. xylostella and that mutations in the now poorly expressed receptor genes may not contribute significantly to the phenotype. To that end we investigated the expression of a receptor (ABCC2) and the major regulator of the signalling pathway (MAP4K4) in two resistant and four susceptible strains. No correlation was found between expression levels and susceptibility; however, a frameshift mutation was identified in the ABCC2 receptor in a newly characterized resistant strain.


Subject(s)
Bacillus thuringiensis , Insecticide Resistance , Moths , Pest Control, Biological , Animals , Bacillus thuringiensis/genetics , Insecticide Resistance/genetics , Moths/microbiology , Moths/genetics , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Brazil , Insect Proteins/genetics , Insect Proteins/metabolism , Bacterial Proteins/genetics
15.
Int J Biol Macromol ; 267(Pt 1): 131459, 2024 May.
Article in English | MEDLINE | ID: mdl-38593893

ABSTRACT

Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.


Subject(s)
Bacillus thuringiensis Toxins , Hemolysin Proteins , Insecticide Resistance , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins , Promoter Regions, Genetic , Spodoptera , Transcription Factors , Animals , Spodoptera/genetics , Spodoptera/drug effects , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Insecticide Resistance/genetics , Hemolysin Proteins/genetics , Promoter Regions, Genetic/genetics , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Endotoxins/genetics , Gene Expression Regulation/drug effects , Larva/drug effects , Larva/genetics
16.
Ecotoxicol Environ Saf ; 276: 116291, 2024 May.
Article in English | MEDLINE | ID: mdl-38581910

ABSTRACT

Myzus persicae is an important pest that has developed resistance to nearly all currently used insecticidal products. The employment of insecticide synergists is one of the effective strategies that need to be developed for the management of this resistance. Our study showed that treatment with a combination of the antibiotic, rifampicin, with imidacloprid, cyantraniliprole, or clothianidin significantly increased their toxicities against M. persicae, by 2.72, 3.59, and 2.41 folds, respectively. Rifampicin treatment led to a noteworthy reduction in the activities of multifunctional oxidases (by 32.64%) and esterases (by 23.80%), along with a decrease in the expression of the CYP6CY3 gene (by 58.57%) in M. persicae. It also negatively impacted the fitness of the aphids, including weight, life span, number of offspring, and elongation of developmental duration. In addition, bioassays showed that the combination of rifampicin and a detoxification enzyme inhibitor, piperonyl butoxide, or dsRNA of CYP6CY3 further significantly improved the toxicity of imidacloprid against M. persicae, by 6.19- and 7.55-fold, respectively. The present study suggests that development of active ingredients such as rifampicin as candidate synergists, show promise to overcome metabolic resistance to insecticides in aphids.


Subject(s)
Aphids , Guanidines , Insecticides , Neonicotinoids , Nitro Compounds , Piperonyl Butoxide , Rifampin , Thiazoles , Animals , Rifampin/toxicity , Rifampin/pharmacology , Aphids/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Thiazoles/toxicity , Guanidines/toxicity , Piperonyl Butoxide/toxicity , Pyrazoles/toxicity , Drug Synergism , Insecticide Resistance/genetics , Pesticide Synergists/toxicity , ortho-Aminobenzoates/toxicity , Esterases/metabolism
17.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582599

ABSTRACT

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Subject(s)
Insecticides , Receptors, Nicotinic , Thysanoptera , Animals , Thysanoptera/metabolism , Insecticides/toxicity , Insecticide Resistance/genetics , Biological Control Agents/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Insecta/genetics , Macrolides/pharmacology , Drug Combinations
18.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556749

ABSTRACT

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Female , Moths/genetics , Moths/metabolism , Larva/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Longevity , CRISPR-Cas Systems , Endotoxins/genetics , Endotoxins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics
19.
Malar J ; 23(1): 122, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671462

ABSTRACT

BACKGROUND: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS: This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS: These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.


Subject(s)
Anopheles , Insecticide Resistance , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Anopheles/classification , Insecticide Resistance/genetics , Kenya , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Genetics, Population , Africa, Western , Insecticides/pharmacology , Africa, Central , Female
20.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...