Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Front Endocrinol (Lausanne) ; 12: 745984, 2021.
Article in English | MEDLINE | ID: mdl-34630335

ABSTRACT

Although spermatogenic dysfunction is widely found in patients with human immunodeficiency virus (HIV), the underlying reasons remain unclear. Thus far, potential hypotheses involving viral reservoirs, testicular inflammation, hormone imbalance, and cachexia show inconsistent correlation with spermatogenic dysfunction. Here, northern pig-tailed macaques (NPMs) exhibited marked spermatogenic dysfunction after long-term infection with simian immunodeficiency virus (SIVmac239), with significant decreases in Johnsen scores, differentiated spermatogonial stem cells, and testicular proliferating cells. The above hypotheses were also evaluated. Results showed no differences between SIV- and SIV+ NPMs, except for an increase in follicle stimulating hormone (FSH) during SIV infection, which had no direct effect on the testes. However, long-term SIVmac239 infection undermined pancreatic islet ß cell function, partly represented by significant reductions in cellular counts and autophagy levels. Pancreatic islet ß cell dysfunction led to glucose metabolism disorder at the whole-body level, which inhibited lactate production by Sertoli cells in testicular tissue. As lactate is the main energy substrate for developing germ cells, its decrease was strongly correlated with spermatogenic dysfunction. Therefore, glucose metabolism disorder appears to be a primary cause of spermatogenic dysfunction in NPMs with long-term SIVmac239 infection.


Subject(s)
Glucose Metabolism Disorders/complications , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/complications , Spermatogenesis/physiology , Animals , Glucose/metabolism , Glucose Metabolism Disorders/physiopathology , Glucose Metabolism Disorders/veterinary , Infertility, Male/etiology , Infertility, Male/metabolism , Infertility, Male/physiopathology , Infertility, Male/veterinary , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/virology , Macaca nemestrina/metabolism , Macaca nemestrina/physiology , Macaca nemestrina/virology , Male , Semen Analysis/veterinary , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Immunodeficiency Virus/physiology
2.
J Diabetes Investig ; 12(12): 2126-2128, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34529355

ABSTRACT

Two recent reports denoted the potential of SARS-CoV-2 to directly infect ß-cells and the possible fate of ß-cells under COVID-19. The fight against SARS-CoV-2 will continue to develop more effective therapeutic strategies for diabetes.


Subject(s)
COVID-19/epidemiology , COVID-19/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/metabolism , Insulin-Secreting Cells/metabolism , SARS-CoV-2/metabolism , Diabetes Mellitus/virology , Humans , Insulin-Secreting Cells/virology
3.
Nat Commun ; 12(1): 3534, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112801

ABSTRACT

Metabolic diseases are associated with an increased risk of severe COVID-19 and conversely, new-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients. Here, we performed a comprehensive analysis of pancreatic autopsy tissue from COVID-19 patients using immunofluorescence, immunohistochemistry, RNA scope and electron microscopy and detected SARS-CoV-2 viral infiltration of beta-cells in all patients. Using SARS-CoV-2 pseudoviruses, we confirmed that isolated human islet cells are permissive to infection. In eleven COVID-19 patients, we examined the expression of ACE2, TMPRSS and other receptors and factors, such as DPP4, HMBG1 and NRP1, that might facilitate virus entry. Whereas 70% of the COVID-19 patients expressed ACE2 in the vasculature, only 30% displayed ACE2-expression in beta-cells. Even in the absence of manifest new-onset diabetes, necroptotic cell death, immune cell infiltration and SARS-CoV-2 viral infection of pancreatic beta-cells may contribute to varying degrees of metabolic dysregulation in patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Insulin-Secreting Cells/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/isolation & purification , Serine Endopeptidases/metabolism , Adult , Aged , Autopsy , Diabetes Complications/pathology , Diabetes Complications/virology , Diabetes Mellitus/pathology , Dipeptidyl Peptidase 4/metabolism , Female , HMGN Proteins/metabolism , Humans , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Neuropilin-1/metabolism , Organ Specificity/physiology
4.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34081912

ABSTRACT

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Subject(s)
COVID-19/virology , Diabetes Mellitus/virology , Insulin-Secreting Cells/virology , Neuropilin-1/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , A549 Cells , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antigens, CD/metabolism , Apoptosis , Apoptosis Regulatory Proteins/metabolism , COVID-19/complications , COVID-19/diagnosis , Case-Control Studies , Diabetes Mellitus/diagnosis , Diabetes Mellitus/metabolism , Female , Host-Pathogen Interactions , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Receptors, Transferrin/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism
5.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34081913

ABSTRACT

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Subject(s)
COVID-19/virology , Cell Transdifferentiation , Insulin-Secreting Cells/virology , SARS-CoV-2/pathogenicity , Acetamides/pharmacology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , COVID-19/mortality , Cell Transdifferentiation/drug effects , Chlorocebus aethiops , Cyclohexylamines/pharmacology , Cytokines/metabolism , Eukaryotic Initiation Factor-2/metabolism , Female , Glucagon , Host-Pathogen Interactions , Humans , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Middle Aged , Phenotype , Signal Transduction , Tissue Culture Techniques , Trypsin/metabolism , Vero Cells , Young Adult
6.
Islets ; 13(3-4): 66-79, 2021 07 04.
Article in English | MEDLINE | ID: mdl-33970787

ABSTRACT

The link between COVID-19 infection and diabetes has been explored in several studies since the start of the pandemic, with associations between comorbid diabetes and poorer prognosis in patients infected with the virus and reports of diabetic ketoacidosis occurring with COVID-19 infection. As such, significant interest has been generated surrounding mechanisms by which the virus may exert effects on the pancreatic ß cells. In this review, we consider possible routes by which SARS-CoV-2 may impact ß cells. Specifically, we outline data that either support or argue against the idea of direct infection and injury of ß cells by SARS-CoV-2. We also discuss ß cell damage due to a "bystander" effect in which infection with the virus leads to damage to surrounding tissues that are essential for ß cell survival and function, such as the pancreatic microvasculature and exocrine tissue. Studies elucidating the provocation of a cytokine storm following COVID-19 infection and potential impacts of systemic inflammation and increases in insulin resistance on ß cells are also reviewed. Finally, we summarize the existing clinical data surrounding diabetes incidence since the start of the COVID-19 pandemic.


Subject(s)
Insulin-Secreting Cells/physiology , SARS-CoV-2/physiology , Bystander Effect/physiology , COVID-19/complications , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Diabetes Mellitus/virology , Humans , Inflammation/complications , Inflammation/metabolism , Inflammation/virology , Insulin Resistance/physiology , Insulin-Secreting Cells/virology , Pandemics , SARS-CoV-2/pathogenicity
7.
Int Rev Cell Mol Biol ; 359: 1-80, 2021.
Article in English | MEDLINE | ID: mdl-33832648

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic ß-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic ß-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in ß-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in ß-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and ß-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Interferon Type I/metabolism , Animals , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Epigenesis, Genetic , Humans , Insulin-Secreting Cells/virology , Interferon Type I/genetics , Viruses/metabolism
9.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Article in English | MEDLINE | ID: mdl-33281748

ABSTRACT

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Insulin-Secreting Cells/metabolism , Microvessels/metabolism , Pancreas/metabolism , SARS-CoV-2/isolation & purification , COVID-19/metabolism , COVID-19/pathology , Cells, Cultured , Cytokines/metabolism , Humans , Insulin-Secreting Cells/virology , Microvessels/virology , Pancreas/virology
10.
J Biol Chem ; 295(49): 16655-16664, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32972972

ABSTRACT

Viral infection is one environmental factor that may contribute to the initiation of pancreatic ß-cell destruction during the development of autoimmune diabetes. Picornaviruses, such as encephalomyocarditis virus (EMCV), induce a pro-inflammatory response in islets leading to local production of cytokines, such as IL-1, by resident islet leukocytes. Furthermore, IL-1 is known to stimulate ß-cell expression of iNOS and production of the free radical nitric oxide. The purpose of this study was to determine whether nitric oxide contributes to the ß-cell response to viral infection. We show that nitric oxide protects ß-cells against virally mediated lysis by limiting EMCV replication. This protection requires low micromolar, or iNOS-derived, levels of nitric oxide. At these concentrations nitric oxide inhibits the Krebs enzyme aconitase and complex IV of the electron transport chain. Like nitric oxide, pharmacological inhibition of mitochondrial oxidative metabolism attenuates EMCV-mediated ß-cell lysis by inhibiting viral replication. These findings provide novel evidence that cytokine signaling in ß-cells functions to limit viral replication and subsequent ß-cell lysis by attenuating mitochondrial oxidative metabolism in a nitric oxide-dependent manner.


Subject(s)
Encephalomyocarditis virus/physiology , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Oxidative Stress , Animals , Apoptosis/drug effects , Cells, Cultured , Female , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/virology , Interferon-beta/genetics , Interferon-beta/metabolism , Male , Mice , Mice, Inbred C57BL , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Nitric Oxide/pharmacology , Nitric Oxide Donors/pharmacology , Oxidative Stress/drug effects , Poly I-C/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Unfolded Protein Response/drug effects , Up-Regulation/drug effects , Virus Replication
11.
Viruses ; 12(7)2020 07 11.
Article in English | MEDLINE | ID: mdl-32664501

ABSTRACT

Using immunohistochemistry, enterovirus capsid proteins were demonstrated in pancreatic islets of patients with type 1 diabetes. Virus proteins are mainly located in beta cells, supporting the hypothesis that enterovirus infections may contribute to the pathogenesis of type 1 diabetes. In samples of pancreatic tissue, enterovirus RNA was also detected, but in extremely small quantities and in a smaller proportion of cases compared to the enteroviral protein. Difficulties in detecting viral RNA could be due to the very small number of infected cells, the possible activity of PCR inhibitors, and the presence-during persistent infection-of the viral genome in unencapsidated forms. The aim of this study was twofold: (a) to examine if enzymes or other compounds in pancreatic tissue could affect the molecular detection of encapsidated vs. unencapsidated enterovirus forms, and (b) to compare the sensitivity of RT-PCR methods used in different laboratories. Dilutions of encapsidated and unencapsidated virus were spiked into human pancreas homogenate and analyzed by RT-PCR. Incubation of pancreatic homogenate on wet ice for 20 h did not influence the detection of encapsidated virus. In contrast, a 15-min incubation on wet ice dramatically reduced detection of unencapsidated forms of virus. PCR inhibitors could not be found in pancreatic extract. The results show that components in the pancreas homogenate may selectively affect the detection of unencapsidated forms of enterovirus. This may lead to difficulties in diagnosing persisting enterovirus infection in the pancreas of patients with type 1 diabetes.


Subject(s)
Capsid Proteins/metabolism , Diabetes Mellitus, Type 1/virology , Enterovirus Infections/complications , Enterovirus/genetics , RNA, Viral/metabolism , Diabetes Mellitus, Type 1/etiology , Enterovirus B, Human/genetics , Enterovirus Infections/virology , Humans , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/virology , Real-Time Polymerase Chain Reaction
12.
Proc Natl Acad Sci U S A ; 117(16): 9022-9031, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32284404

ABSTRACT

The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic ß-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in ß-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in ß-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic ß-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Insulin-Secreting Cells/immunology , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , STAT1 Transcription Factor/genetics , 3' Untranslated Regions/genetics , Cell Survival/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Genetic Predisposition to Disease , HEK293 Cells , Humans , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/virology , Jurkat Cells , Poly I-C/immunology , Polymorphism, Single Nucleotide , Primary Cell Culture , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Viral/immunology , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Up-Regulation/immunology
13.
Methods Mol Biol ; 2128: 107-114, 2020.
Article in English | MEDLINE | ID: mdl-32180189

ABSTRACT

Studies performed in humans and animal models have implicated the environment in the etiology of type 1 diabetes (T1D), but the nature and timing of the interactions triggering ß cell autoimmunity are poorly understood. Virus infections have been postulated to be involved in disease mechanisms, but the underlying mechanisms are not known. It is exceedingly difficult to establish a cause-and-effect relationship between viral infection and diabetes in humans. Thus, we have used the BioBreeding Diabetes-Resistant (BBDR) and the LEW1.WR1 rat models of virus-induced disease to elucidate how virus infection leads to T1D. The immunophenotype of these strains is normal, and spontaneous diabetes does not occur in a specific pathogen-free environment. However, ß cell inflammation and diabetes with many similarities to the human disease are induced by infection with the parvovirus Kilham rat virus (KRV). KRV-induced diabetes in the BBDR and LEW1.WR1 rat models is limited to young animals and can be induced in both male and female rats. Thus, these animals provide a powerful experimental tool to identify mechanisms underlying virus-induced T1D development.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/virology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Parvoviridae Infections/complications , Parvovirus/immunology , Animals , Blood Glucose/analysis , Cell Culture Techniques , Cell Line , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/etiology , Female , Glycosuria , Inflammation/immunology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/virology , Male , Rats , Rats, Inbred BB , Rats, Inbred Lew , Rats, Inbred WF
14.
Clin Sci (Lond) ; 134(5): 529-542, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32100852

ABSTRACT

Chronic hepatitis C virus (HCV) infection has a close association with type 2 diabetes mellitus. Although the mechanisms of insulin resistance in chronic hepatitis C (CHC) patients have been extensively studied, little attention has been given to the role of ß-cell function in HCV-associated diabetes. Here, we analysed ß-cell function in CHC patients and HCV-infected mouse model and found in addition to insulin resistance, impaired pancreatic ß-cell function occurred in CHC patients and HCV-infected C/OTg mice, not only in diabetic individuals but also in individuals with impaired fasting glucose levels. Both first-phase and second-phase insulin secretion were impaired, at least partially due to the reduction of exocytosis of secretory insulin-containing granules following HCV infection. Up-regulated p38δ in HCV-infected ß-cells resulted in inactivation of protein kinase D (PKD), which was responsible for impaired insulin secretory capacity of ß-cells. Thus, impaired insulin secretion due to HCV infection in ß-cells contributes to HCV-associated type 2 diabetes. These findings provided a new inspiration for the important prognostic and therapeutic implications in the management of CHC patients with impaired fasting glucose.


Subject(s)
Exocytosis , Hepatitis C, Chronic/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mitogen-Activated Protein Kinase 13/metabolism , Animals , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucose Intolerance/blood , Glucose Intolerance/metabolism , Glucose Intolerance/virology , Hepatitis C, Chronic/virology , Humans , Insulin/metabolism , Insulin-Secreting Cells/virology , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Protein Kinase C/metabolism
15.
J Biol Chem ; 295(8): 2385-2397, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31915247

ABSTRACT

Viral infection is an environmental trigger that has been suggested to initiate pancreatic ß-cell damage, leading to the development of autoimmune diabetes. Viruses potently activate the immune system and can damage ß cells by either directly infecting them or stimulating the production of secondary effector molecules (such as proinflammatory cytokines) during bystander activation. However, how and where ß cells recognize viruses is unclear, and the antiviral responses that are initiated following virus recognition are incompletely understood. In this study, we show that the ß-cell response to dsRNA, a viral replication intermediate known to activate antiviral responses, is determined by the cellular location of sensing (intracellular versus extracellular) and differs from the cellular response to cytokine treatment. Using biochemical and immunological methods, we show that ß cells selectively respond to intracellular dsRNA by expressing type I interferons (IFNs) and inducing apoptosis, but that they do not respond to extracellular dsRNA. These responses differ from the activities of cytokines on ß cells, which are mediated by inducible nitric oxide synthase expression and ß-cell production of nitric oxide. These findings provide evidence that the antiviral activities of type I IFN production and apoptosis are elicited in ß cells via the recognition of intracellular viral replication intermediates and that ß cells lack the capacity to respond to extracellular viral intermediates known to activate innate immune responses.


Subject(s)
Insulin-Secreting Cells/virology , RNA, Double-Stranded/metabolism , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , DNA Damage , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Inflammation/pathology , Interferon Type I/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Poly I-C/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Toll-Like Receptor 3/metabolism
16.
Cell Mol Life Sci ; 77(1): 179-194, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31172216

ABSTRACT

It has been suggested that the persistence of coxsackieviruses-B (CV-B) in pancreatic beta cells plays a role in the pathogenesis of type 1 diabetes (T1D). Yet, immunological effectors, especially natural killer (NK) cells, are supposed to clear virus-infected cells. Therefore, an evaluation of the response of NK cells to pancreatic beta cells persistently infected with CV-B4 was conducted. A persistent CV-B4 infection was established in 1.1B4 pancreatic beta cells. Infectious particles were found in supernatants throughout the culture period. The proportion of cells containing viral protein VP1 was low (< 5%), although a large proportion of cells harbored viral RNA (around 50%), whilst cell viability was preserved. HLA class I cell surface expression was downregulated in persistently infected cultures, but HLA class I mRNA levels were unchanged in comparison with mock-infected cells. The cytolytic activities of IL-2-activated non-adherent peripheral blood mononuclear cells (PBMCs) and of NK cells were higher towards persistently infected cells than towards mock-infected cells, as assessed by an LDH release assay. Impaired cytolytic activity of IL-2-activated non-adherent PBMCs from patients with T1D towards infected beta cells was observed. In conclusion, pancreatic beta cells persistently infected with CV-B4 can be lysed by NK cells, implying that impaired cytolytic activity of these effector cells may play a role in the persistence of CV-B in the host and thus in the viral pathogenesis of T1D.


Subject(s)
Coxsackievirus Infections/complications , Diabetes Mellitus, Type 1/virology , Enterovirus B, Human/immunology , Insulin-Secreting Cells/virology , Killer Cells, Natural/immunology , Adult , Cell Line , Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/immunology , Humans , Immunity, Cellular , Insulin-Secreting Cells/immunology , Middle Aged
17.
Biochem Biophys Res Commun ; 521(4): 853-860, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31708097

ABSTRACT

Viral infection is a putative causal factor for the development of type 1 diabetes, but the exact pathogenic mechanism of virus-induced diabetes (VID) remains unclear. Here, to identify the critical factors that regulate VID, we analyzed encephalomyocarditis D (EMC-D) VID-sensitive DBA/2 mice in comparison with resistant B6 mice. EMC-D virus-induced cell death occurred more frequently in DBA/2 ß-cells than in B6 ß-cells with 100U/ml IFN-ß priming in vitro. We therefore purified ß-cells using flow cytometry from mice two days after EMC-D virus infection and subjected them to microarray analysis. As a results, innate immune response pathway was found to be enriched in B6 ß-cells. The signal transducer and activator of transcription 2 (Stat2) gene interacted with genes in the pathway. Stat2 gene expression levels were lower in DBA/2 mice than in B6 mice, restrictive to ß-cells. Moreover, administration of IFN-ß failed to upregulate Stat2 gene in DBA/2 ß-cells than in those of B6 in vivo. The viral titer significantly increased only in the DBA/2 pancreas. Thus, these provided data suggest that impaired upregulation of Stat2 gene restrictive to ß-cells at the early stage of infection is responsible for VID development in DBA/2 mice.


Subject(s)
Cardiovirus Infections/complications , Diabetes Mellitus, Type 1/virology , Insulin-Secreting Cells/virology , STAT2 Transcription Factor/genetics , Animals , Cardiovirus Infections/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/virology , Diabetes Mellitus, Type 1/genetics , Encephalomyocarditis virus , Gene Expression Regulation , Immunity, Innate/genetics , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/immunology , Interferon Type I/pharmacology , Male , Mice, Inbred C57BL , Mice, Inbred DBA , STAT2 Transcription Factor/metabolism , Up-Regulation
18.
Nat Med ; 25(12): 1865-1872, 2019 12.
Article in English | MEDLINE | ID: mdl-31792456

ABSTRACT

Viruses are implicated in autoimmune destruction of pancreatic islet ß cells, which results in insulin deficiency and type 1 diabetes (T1D)1-4. Certain enteroviruses can infect ß cells in vitro5, have been detected in the pancreatic islets of patients with T1D6 and have shown an association with T1D in meta-analyses4. However, establishing consistency in findings across studies has proven difficult. Obstacles to convincingly linking RNA viruses to islet autoimmunity may be attributed to rapid viral mutation rates, the cyclical periodicity of viruses7 and the selection of variants with altered pathogenicity and ability to spread in populations. ß cells strongly express cell-surface coxsackie and adenovirus receptor (CXADR) genes, which can facilitate enterovirus infection8. Studies of human pancreata and cultured islets have shown significant variation in enteroviral virulence to ß cells between serotypes and within the same serotype9,10. In this large-scale study of known eukaryotic DNA and RNA viruses in stools from children, we evaluated fecally shed viruses in relation to islet autoimmunity and T1D. This study showed that prolonged enterovirus B rather than independent, short-duration enterovirus B infections may be involved in the development of islet autoimmunity, but not T1D, in some young children. Furthermore, we found that fewer early-life human mastadenovirus C infections, as well as CXADR rs6517774, independently correlated with islet autoimmunity.


Subject(s)
Autoimmunity/immunology , Diabetes Mellitus, Type 1/virology , Enterovirus/isolation & purification , RNA, Viral/isolation & purification , Adolescent , Autoimmunity/genetics , Child , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Enterovirus/immunology , Enterovirus/pathogenicity , Feces/virology , Female , Humans , Infant , Insulin/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/virology , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Islets of Langerhans/virology , Male , Pancreas/immunology , Pancreas/pathology , Pancreas/virology
19.
Curr Diab Rep ; 19(12): 141, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754894

ABSTRACT

PURPOSE OF THE REVIEW: The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression. RECENT FINDINGS: The envelope protein of HERV-W family, named HERV-W-Env, was detected in pancreata from T1D patients and was shown to display pro-inflammatory properties and direct toxicity toward pancreatic beta cells. The etiopathogenesis of T1D remains elusive, even if conventional environmental viral infections have been recurrently involved. Nonetheless, a new category of pathogens may provide the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. A number of studies have now shown that HERV sequences, which are normally inactivated or repressed in the human genome, could be activated by environmental viruses. Thus, if similarly activated by viruses associated with T1D, disregarded HERV genes may underlie T1D genetic susceptibility. Moreover, once expressed, HERV elements may display broad pathogenic properties, which identify them as potential new therapeutic targets.


Subject(s)
Diabetes Mellitus, Type 1/etiology , Endogenous Retroviruses/physiology , Gene Products, env/isolation & purification , Insulin-Secreting Cells/virology , Virus Activation/physiology , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/physiopathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/virology , Disease Models, Animal , Disease Progression , Endogenous Retroviruses/isolation & purification , Endogenous Retroviruses/pathogenicity , Epigenesis, Genetic , Gene-Environment Interaction , Humans , Mice
20.
Biochem Biophys Res Commun ; 513(2): 446-451, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30967257

ABSTRACT

Influenza virus infection is associated with type 1 diabetes (T1DM), but its pathogenesis remains unclear. Here, our study found that one of the monoclonal antibodies against H1N1 influenza virus hemagglutinin(HA) cross-reacted with human pancreatic tissue and further demonstrated that it binded to rat islet ß-cells. We immunoprecipitated islet protein with this cross-reactive antibody and identified the bound antigen as prohibitin by mass spectrometry. We then expressed the prohibitin protein in bacteria and confirmed the antibody binding to prohibitin by Western blot. We also verified the cross-reactivity of the antibody by prohibitin-siRNA transfection in islet beta cells. We conclude that prohibitin is an autoantigen that cross-reacts with influenza virus HA. The correlation between the autoantigen prohibitin and type 1 diabetes remains to be investigated.


Subject(s)
Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/immunology , Repressor Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line , Cross Reactions , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Humans , Influenza, Human/immunology , Influenza, Human/virology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/virology , Orthomyxoviridae Infections/virology , Pancreas/immunology , Pancreas/virology , Prohibitins , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...