Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Nat Microbiol ; 9(6): 1467-1482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750176

ABSTRACT

Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2ß1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2ß1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.


Subject(s)
Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Programmed Cell Death 1 Receptor , Animals , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Mice , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/microbiology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Line, Tumor , Integrin alpha2beta1/metabolism , Immune Checkpoint Inhibitors/pharmacology , Signaling Lymphocytic Activation Molecule Family/metabolism , Mice, Inbred C57BL , Signal Transduction , Drug Resistance, Neoplasm , Disease Models, Animal , Female , NF-kappa B/metabolism
2.
Wound Repair Regen ; 32(4): 475-486, 2024.
Article in English | MEDLINE | ID: mdl-38572659

ABSTRACT

Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2ß1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin ß1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds.


Subject(s)
Collagen , Fibroblasts , Keratinocytes , Re-Epithelialization , Signal Transduction , Wound Healing , Animals , Humans , Swine , Collagen/metabolism , Collagen/pharmacology , Keratinocytes/metabolism , Re-Epithelialization/drug effects , Fibroblasts/metabolism , Wound Healing/drug effects , Wound Healing/physiology , Integrin alpha2beta1/metabolism , Cell Proliferation , Cells, Cultured , Cell Movement , Skin/injuries , Skin/metabolism , Peptides/pharmacology
3.
J Biomater Sci Polym Ed ; 35(10): 1523-1536, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574261

ABSTRACT

The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2ß1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2ß1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2ß1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.


Subject(s)
Cell Adhesion , Collagen , Integrin alpha2beta1 , Protein Binding , Integrin alpha2beta1/metabolism , Integrin alpha2beta1/chemistry , Humans , Collagen/chemistry , Collagen/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Animals , Tissue Engineering/methods , Cell Line, Tumor
4.
Cell Metab ; 36(3): 598-616.e9, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38401546

ABSTRACT

Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2ß1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2ß1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Thrombosis , Humans , Mice , Animals , Integrin alpha2beta1/genetics , Integrin alpha2beta1/metabolism , Collagen/metabolism , Blood Platelets/metabolism , COVID-19/metabolism
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010687

ABSTRACT

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2β1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Subject(s)
Humans , Paxillin/metabolism , Protein-Lysine 6-Oxidase/metabolism , Carcinoma, Squamous Cell/pathology , Epithelial-Mesenchymal Transition , Integrin alpha2beta1/metabolism , Mouth Neoplasms/pathology , Collagen/metabolism , Fibroblasts , Extracellular Vesicles/metabolism , Cell Line, Tumor , Tumor Microenvironment
6.
J. venom. anim. toxins incl. trop. dis ; 24: 13, 2018. graf, ilus
Article in English | LILACS | ID: biblio-894171

ABSTRACT

Background: Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2ß1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2ß1 integrin. Herein, we used ALT-C as a α2ß1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods: ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2ß1, integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results: Our data demonstrate that ALT-C, after binding to α2ß1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion: These results demonstrate that α2ß1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies.(AU)


Subject(s)
Humans , Animals , Breast Neoplasms , Matrix Metalloproteinase 2/pharmacology , Matrix Metalloproteinase 9/pharmacology , Crotalid Venoms/pharmacology , Integrin alpha2beta1/metabolism , Endothelial Cells , Blotting, Western/methods , Polymerase Chain Reaction/methods , Bothrops , Receptors, Collagen , Tumor Microenvironment , Flow Cytometry
SELECTION OF CITATIONS
SEARCH DETAIL