Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.756
Filter
1.
Reprod Biomed Online ; 48(3): 103646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290387

ABSTRACT

RESEARCH QUESTION: What is the relationship between ATG8 and integrin α4ß1, Talin-1, and Treg cell differentiation, and the effects on endometriosis (EMS)? DESIGN: First, the correlation between the ATG8, Talin-1, integrin α4ß1, and differentiation of Treg cells and EMS was examined in clinical samples. Human peripheral blood mononuclear cells (PBMC) and endometrial stromal cells were extracted and identified, oe-ATG8 and oe-integrin α4ß1 were transfected to overexpress ATG8 and integrin α4ß1, and Tregs cell differentiation and endometrial stromal cells (ESC) function were detected. In addition, the molecular mechanism by which ATG8 inhibited EMS disease progression at the molecular and animal levels was investigated. RESULTS: ATG8 expression was negatively correlated with positive proportion of Tregs cells (P = 0.0463). The expression of Talin-1 and integrin-α4ß1 (both P < 0.0001) in PBMC decreased significantly after oe-ATG8 transfection, whereas the Treg cells' positive rate significantly increased (P = 0.0003). The ESC proliferation, adhesion, migration, and invasion (all P < 0.0001) declined after co-culture with Treg cells that underwent oe-ATG8 transfection. The expression of Talin-1 (P = 0.0025) and integrin-α4ß1 (P = 0.0002) in PBMC increased significantly after oe-integrin α4ß1 and oe-ATG8 transfection. In addition, this transfection reversed the corresponding regulation of oe-ATG8 transfection. Finally, animal experiments in vivo confirmed that ATG8 inhibited EMS disease progression. CONCLUSION: The ATG8 regulated Treg cell differentiation and inhibited EMS formation by influencing the interaction between integrin α4ß1 and Talin-1.


Subject(s)
Endometriosis , Integrin alpha4beta1 , Animals , Female , Humans , Integrin alpha4beta1/metabolism , T-Lymphocytes, Regulatory , Talin/genetics , Talin/metabolism , Leukocytes, Mononuclear/metabolism , Cell Differentiation , Disease Progression , Cell Adhesion
2.
Mol Pharm ; 21(3): 1353-1363, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38282332

ABSTRACT

Very late antigen-4 (VLA4; CD49d) is a promising immune therapy target in treatment-resistant leukemia and multiple myeloma, and there is growing interest in repurposing the humanized monoclonal antibody (Ab), natalizumab, for this purpose. Positron emission tomography with radiolabeled Abs (immuno-PET) could facilitate this effort by providing information on natalizumab's in vivo pharmacokinetic and target delivery properties. In this study, we labeled natalizumab with 89Zr specifically on sulfhydryl moieties via maleimide-deferoxamine conjugation. High VLA4-expressing MOLT4 human T cell acute lymphoblastic leukemia cells showed specific 89Zr-natalizumab binding that was markedly blocked by excess Ab. In nude mice bearing MOLT4 tumors, 89Zr-natalizumab PET showed high-contrast tumor uptake at 7 days postinjection. Biodistribution studies confirmed that uptake was the highest in MOLT4 tumors (2.22 ± 0.41%ID/g) and the liver (2.33 ± 0.76%ID/g), followed by the spleen (1.51 ± 0.42%ID/g), while blood activity was lower at 1.12 ± 0.21%ID/g. VLA4-specific targeting in vivo was confirmed by a 58.1% suppression of tumor uptake (0.93 ± 0.15%ID/g) when excess Ab was injected 1 h earlier. In cultured MOLT4 cells, short-term 3 day exposure to the proteasome inhibitor bortezomib (BTZ) did not affect the α4 integrin level, but BTZ-resistant cells that survived the treatment showed increased α4 integrin expression. When the effects of BTZ treatment were tested in mice, there was no change of the α4 integrin level or 89Zr-natalizumab uptake in MOLT4 leukemia tumors, which underscores the complexity of tumor VLA4 regulation in vivo. In conclusion, 89Zr-natalizumab PET may be useful for noninvasive monitoring of tumor VLA4 and may assist in a more rational application of Ab-based therapies for hematologic malignancies.


Subject(s)
Integrin alpha4beta1 , Leukemia , Humans , Animals , Mice , Natalizumab/therapeutic use , Cysteine , Integrin alpha4 , Mice, Nude , Tissue Distribution , Cell Line, Tumor , Positron-Emission Tomography/methods , Zirconium/chemistry
4.
J Immunol ; 212(1): 96-106, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37955427

ABSTRACT

Retinoic acid, produced by intestinal dendritic cells (DCs), promotes T cell trafficking to the intestinal mucosa by upregulating α4ß7 integrin and inhibiting the generation of cutaneous leukocyte Ag (CLA) required for skin entry. In the present study, we report that activation of human naive CD4 T cells in an APC-free system generates cells expressing α4ß7 alone; in contrast, activation by intestinal DCs that produce retinoic acid and induce high levels of α4ß7 also results in CLA expression, generating CLA+α4ß7+ "dual tropic" cells, with both gut and skin trafficking potential, that also express high levels of α4ß1 integrin. DC generation of CLA+α4ß7+ T cells is associated with upregulation of FUT7, a fucosyltransferase involved in CLA generation; requires cell contact; and is enhanced by IL-12/IL-23. The blood CD4+ T cell population contains CLA+α4ß7+ cells, which are significantly enriched for cells capable of IFN-γ, IL-17, and TNF-α production compared with conventional CLA-α4ß7+ cells. Dual tropic lymphocytes are increased in intestinal tissue from patients with Crohn's disease, and single-cell RNA-sequencing analysis identifies a transcriptionally distinct cluster of FUT7-expressing cells present only in inflamed tissue; expression of genes associated with cell proliferation suggests that these cells are undergoing local activation. The expression of multiple trafficking molecules by CLA+α4ß7+ T cells can enable their recruitment by alternative pathways to both skin and gut; they may contribute to both intestinal and cutaneous manifestations of inflammatory bowel disease.


Subject(s)
CD4-Positive T-Lymphocytes , Tretinoin , Humans , Tretinoin/pharmacology , Skin , Integrin alpha4beta1 , Dendritic Cells
5.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37401145

ABSTRACT

Cutaneous leishmaniasis is an infectious disease that may lead to a single or multiple disseminated cutaneous lesions. The mechanisms involved in Leishmania dissemination to different areas of the skin and the internal organs remain poorly understood. Evidence shows that Very Late Antigen-4 (VLA-4)-dependent phagocyte adhesion is impaired by Leishmania infection, which may be related to the mechanisms of parasite dissemination. We investigated factors potentially associated with decreased VLA-4-mediated adhesion in Leishmania-infected macrophages, including lipid raft-mediated VLA-4 mobilization along the cellular membrane, integrin cluster formation at the cell base (adhesion site), and focal adhesion complex assembly. Phagocytes treated with Methyl-ß-Cyclodextrin (MßCD) demonstrated reduced adhesion, similarly to Leishmania amazonensis-infected J774 cells. Infected and MßCD-treated macrophages presented decreased VLA-4 mobilization to the adhesion plane, as well as reduced integrin clustering. Leishmania amazonensis-infected cells exhibited talin depletion, as well as a decreased mobilization of adhesion complex proteins, such as talin and viculin, which were associated with lower VLA-4 concentrations at the adhesion site and limited cell-spreading. Our results suggest that Leishmania infection may modulate the firm adhesion phase of the cell-spreading process, which could contribute to the bloodstream dissemination of infected cells.


Subject(s)
Leishmania mexicana , Leishmania , Leishmaniasis, Cutaneous , Humans , Integrin alpha4beta1 , Talin , Leishmaniasis, Cutaneous/parasitology , Cluster Analysis
6.
Clin Cancer Res ; 29(18): 3560-3562, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37439706

ABSTRACT

CD49d, the alpha chain of the very late antigen-4 (VLA-4) integrin, has a negative prognostic impact in chronic lymphocytic leukemia treated with the Bruton's tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib. Despite BTK inhibition, VLA-4 remains inside-out activated via B-cell receptor, an activation dampened by phosphoinositide 3-kinase inhibitors. Evaluation of CD49d expression in patients starting BTK inhibitor therapy may improve their prognostic stratification. See related article by Alsadhan et al., p. 3612.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Integrin alpha4beta1/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Clinical Relevance , Phosphatidylinositol 3-Kinases
7.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298541

ABSTRACT

Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of ß2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4ß1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4ß1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4ß1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/ß hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4ß1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.


Subject(s)
Neoplasms , Peptidomimetics , Humans , Integrin alpha4beta1/metabolism , Receptors, Lymphocyte Homing/metabolism , Molecular Docking Simulation , Peptidomimetics/pharmacology , Integrin beta1 , Ligands , Integrins/metabolism , Cell Adhesion , Vascular Cell Adhesion Molecule-1/metabolism
8.
Clin Cancer Res ; 29(18): 3612-3621, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37227160

ABSTRACT

PURPOSE: To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL). PATIENTS AND METHODS: In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients. RESULTS: In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4-mediated inside-out activation. Transcriptomes of CD49d+ and CD49d- cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK-STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d- CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d- CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d- were estimated progression-free at 8 years (P = 0.0004). CONCLUSIONS: CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression. See related commentary by Tissino et al., p. 3560.


Subject(s)
Integrin alpha4beta1 , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Progression-Free Survival , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Clinical Relevance , Protein Kinase Inhibitors/pharmacology
9.
Article in English | MEDLINE | ID: mdl-37072216

ABSTRACT

OBJECTIVES: Natalizumab (NTZ), a monoclonal antibody against very late antigen-4 (VLA-4), is one of the most efficient therapies to prevent acute relapses in multiple sclerosis (MS). VLA-4 is the key adhesion molecule for peripheral immune cells, especially lymphocytes to enter the CNS. While its blockade thus virtually abrogates CNS infiltration of these cells, long-term exposure to natalizumab may also affect immune cell function. METHODS: In this study, we report that in patients with MS, NTZ treatment is associated with an enhanced activation status of peripheral monocytes. RESULTS: Expression of 2 independent activation markers, CD69 and CD150, was significantly higher on blood monocytes from NTZ-treated patients when compared with those from matched untreated patients with MS, while other properties such as cytokine production remained unchanged. DISCUSSION: These findings consolidate the concept that peripheral immune cells remain fully competent on NTZ treatment, an excellent asset rare among MS treatments. However, they also suggest that NTZ may exert nondesirable effects on the progressive aspect of MS, where myeloid cells and their chronic activation are attributed a prominent pathophysiologic role.


Subject(s)
Multiple Sclerosis , Humans , Natalizumab/pharmacology , Multiple Sclerosis/drug therapy , Integrin alpha4beta1/metabolism , Monocytes
10.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119479, 2023 08.
Article in English | MEDLINE | ID: mdl-37100352

ABSTRACT

BACKGROUND: The large extracellular matrix protein SVEP1 mediates cell adhesion via integrin α9ß1. Recent studies have identified an association between a missense variant in SVEP1 and increased risk of coronary artery disease (CAD) in humans and in mice Svep1 deficiency alters the development of atherosclerotic plaques. However how SVEP1 functionally contributes to CAD pathogenesis is not fully understood. Monocyte recruitment and differentiation to macrophages is a key step in the development of atherosclerosis. Here, we investigated the requirement for SVEP1 in this process. METHODS: SVEP1 expression was measured during monocyte-macrophage differentiation in primary monocytes and THP-1 human monocytic cells. SVEP1 knockout THP-1 cell lines and the dual integrin α4ß1/α9ß1 inhibitor, BOP, were utilised to investigate the effect of these proteins in THP-1 cell adhesion, migration and cell spreading assays. Subsequent activation of downstream integrin signalling intermediaries was quantified by western blotting. RESULTS: SVEP1 gene expression increases in monocyte to macrophage differentiation in human primary monocytes and THP-1 cells. Using two SVEP1 knockout THP-1 cells we observed reduction in monocyte adhesion, migration, and cell spreading compared to control cells. Similar results were found with integrin α4ß1/α9ß1 inhibition. We demonstrate reduced activity of Rho and Rac1 in SVEP1 knockout THP-1 cells. CONCLUSIONS: SVEP1 regulates monocyte recruitment and differentiation phenotypes through an integrin α4ß1/α9ß1 dependent mechanism. GENERAL SIGNIFICANCE: These results describe a novel role for SVEP1 in monocyte behaviour relevant to CAD pathophysiology.


Subject(s)
Integrin alpha4beta1 , Monocytes , Humans , Cell Adhesion Molecules/metabolism , Cell Differentiation/genetics , Integrin alpha4beta1/metabolism , Macrophages/metabolism
11.
J Med Chem ; 66(7): 5021-5040, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36976921

ABSTRACT

α4ß1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4ß1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.


Subject(s)
Integrin alpha4beta1 , Integrin beta1 , Integrin alpha4beta1/metabolism , Peptides, Cyclic/pharmacology , Ligands , Integrins/metabolism , Cell Adhesion
12.
Nat Commun ; 14(1): 1115, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849523

ABSTRACT

The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.


Subject(s)
CD4-Positive T-Lymphocytes , Integrin alpha4beta1 , Animals , Male , Biological Assay , Genome, Viral/genetics , Phenotype , Proviruses/genetics , HIV/genetics
13.
J Alzheimers Dis ; 91(4): 1541-1555, 2023.
Article in English | MEDLINE | ID: mdl-36641679

ABSTRACT

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE: We explored the reasons for neuron loss following CCH. METHODS: Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4ß1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS: We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION: Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.


Subject(s)
Brain Ischemia , Dementia, Vascular , Vascular Cell Adhesion Molecule-1 , Animals , Rats , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Disease Models, Animal , Inflammation/complications , Inflammation/metabolism , Integrin alpha4beta1/metabolism , Neurons/metabolism , Neurons/pathology , Vascular Cell Adhesion Molecule-1/metabolism
14.
Respir Res ; 24(1): 9, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627690

ABSTRACT

We investigated the effects of vegetable glycerin (VG), a main e-cigarette constituent, on endotoxin-induced acute lung injury (ALI). Mice received intratracheal administration of 30% VG in phosphate buffered saline (PBS) vehicle or only PBS (control) for 4 days. On Day 5, mice received an intratracheal instillation of lipopolysaccharide (LPS) (LPS group and VG + LPS group) or PBS (VG group and control group). Lung histopathology, expression of chemokine receptors, and regulatory signaling were analyzed 24 h after the Day 5 treatment. VG significantly increased ALI-associated histopathological and fibrotic changes in both the VG group and LPS-induced ALI mice (VG + LPS group). Immunohistochemistry (IHC) and western blot analyses revealed that VG administration resulted in upregulation of neutrophil markers [lymphocyte antigen 6 complex locus G6D (Ly6G) and myeloperoxidase (MPO)] as well as upregulation of the expression of transforming growth factor-ß (TGF-ß), a central mediator of fibrogenesis, in the lungs of both VG and VG + LPS groups. VG enhanced the expression of adhesion molecules [very late antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1)] and increased activation of p38 mitogen-activated protein kinase (p38 MAPK) to prompt neutrophil recruitment in the lungs of mice with ALI. Intraperitoneal administration of a p38 inhibitor attenuated these histopathological changes significantly as well as VG-induced upregulation in expression of Ly6G, MPO, VLA-4, VCAM-1, TGF-ß, and collagen-1 in mice with ALI. In conclusion, VG enhances neutrophil chemotaxis and fibrosis and it amplifies the inflammatory response associated with LPS-induced ALI in the lungs via enhancement of p38 MAPK activity.


Subject(s)
Acute Lung Injury , Electronic Nicotine Delivery Systems , Glycerol , Animals , Mice , Acute Lung Injury/metabolism , Fibrosis , Glycerol/adverse effects , Integrin alpha4beta1/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Neutrophils/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Transforming Growth Factor beta/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
15.
J Biol Chem ; 299(1): 102765, 2023 01.
Article in English | MEDLINE | ID: mdl-36470423

ABSTRACT

Hyperlipidemia characterized by high blood levels of free fatty acids (FFAs) is important for the progression of inflammatory cardiovascular diseases. Integrin ß1 is a transmembrane receptor that drives various cellular functions, including differentiation, migration, and phagocytosis. However, the underlying mechanisms modifying integrin ß1 protein and activity in mediating monocyte/macrophage adhesion to endothelium remain poorly understood. In this study, we demonstrated that integrin ß1 protein underwent S-nitrosylation in response to nitrosative stress in macrophages. To examine the effect of elevated levels of FFA on the modulation of integrin ß1 expression, we treated the macrophages with a combination of oleic acid and palmitic acid (2:1) and found that FFA activated inducible nitric oxide synthase/nitric oxide and increased the integrin ß1 protein level without altering the mRNA level. FFA promoted integrin ß1 S-nitrosylation via inducible nitric oxide synthase/nitric oxide and prevented its degradation by decreasing binding to E3 ubiquitin ligase c-Cbl. Furthermore, we found that increased integrin α4ß1 heterodimerization resulted in monocyte/macrophage adhesion to endothelium. In conclusion, these results provided novel evidence that FFA-stimulated N--O stabilizes integrin ß1via S-nitrosylation, favoring integrin α4ß1 ligation to promote vascular inflammation.


Subject(s)
Endothelial Cells , Fatty Acids, Nonesterified , Monocytes , Fatty Acids, Nonesterified/metabolism , Integrin alpha4beta1/metabolism , Monocytes/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Integrin beta1/metabolism , Protein Stability , Endothelial Cells/metabolism , Protein Binding , Stress, Physiological
16.
Nat Commun ; 13(1): 7471, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463259

ABSTRACT

Although integrins are known to be mechanosensitive and to possess many subtypes that have distinct physiological roles, single molecule studies of force exertion have thus far been limited to RGD-binding integrins. Here, we show that integrin α4ß1 and RGD-binding integrins (αVß1 and α5ß1) require markedly different tension thresholds to support cell spreading. Furthermore, actin assembled downstream of α4ß1 forms cross-linked networks in circularly spread cells, is in rapid retrograde flow, and exerts low forces from actin polymerization. In contrast, actin assembled downstream of αVß1 forms stress fibers linking focal adhesions in elongated cells, is in slow retrograde flow, and matures to exert high forces (>54-pN) via myosin II. Conformational activation of both integrins occurs below 12-pN, suggesting that post-activation subtype-specific cytoskeletal remodeling imposes the higher threshold for spreading on RGD substrates. Multiple layers of single integrin mechanics for activation, mechanotransduction and cytoskeleton remodeling revealed here may underlie subtype-dependence of diverse processes such as somite formation and durotaxis.


Subject(s)
Actins , Integrin beta1 , Mechanotransduction, Cellular , Integrin alpha4beta1 , Oligopeptides
17.
Elife ; 112022 12 09.
Article in English | MEDLINE | ID: mdl-36484779

ABSTRACT

Leptomeningeal metastasis is associated with dismal prognosis and has few treatment options. However, very little is known about the immune response to leptomeningeal metastasis. Here, by establishing an immunocompetent mouse model of breast cancer leptomeningeal metastasis, we found that tumor-specific CD8+ T cells were generated in deep cervical lymph nodes (dCLNs) and played an important role in controlling leptomeningeal metastasis. Mechanistically, T cells in dCLNs displayed a senescence phenotype and their recruitment was impaired in mice bearing cancer cells that preferentially colonized in leptomeningeal space. Upregulation of p53 suppressed the transcription of VLA-4 in senescent dCLN T cells and consequently inhibited their migration to the leptomeningeal compartment. Clinically, CD8+ T cells from the cerebrospinal fluid of patients with leptomeningeal metastasis exhibited senescence and VLA-4 downregulation. Collectively, our findings demonstrated that CD8+ T cell immunosenescence drives leptomeningeal metastasis.


Subject(s)
Meningeal Neoplasms , Animals , Mice , Meningeal Neoplasms/secondary , Meningeal Neoplasms/therapy , Integrin alpha4beta1 , CD8-Positive T-Lymphocytes
18.
Cells ; 11(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36497180

ABSTRACT

Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106) is a membrane protein that contributes critical physiologic functional roles in cellular immune response, including leukocyte extravasation in inflamed and infected tissues. Expressed as a cell membrane protein, VCAM-1 can also be cleaved from the cell surface into a soluble form (sVCAM-1). The integrin α4ß1 (VLA-4) was identified as the first major ligand for VCAM-1. Ongoing studies suggest that, in addition to mediating physiologic immune functions, VCAM-1/VLA-4 signaling plays an increasingly vital role in the metastatic progression of various tumors. Additionally, elevated concentrations of sVCAM-1 have been found in the peripheral blood of patients with cancer, suggesting the tumor microenvironment (TME) as the source of sVCAM-1. Furthermore, over-expression of VLA-4 was linked to tumor progression in various malignancies when VCAM-1 was also up-regulated. This review explores the functional role of VCAM-1 expression in cancer metastasis and therapy resistance, and the potential for the disruption of VCAM-1/VLA-4 signaling as a novel immunotherapeutic approach in cancer, including osteosarcoma, which disproportionately affects the pediatric, adolescent and young adult population, as an unmet medical need.


Subject(s)
Neoplasms , Vascular Cell Adhesion Molecule-1 , Humans , Integrin alpha4beta1 , Leukocytes/metabolism , Neoplasms/genetics , Neoplasms/therapy , Tumor Microenvironment , Vascular Cell Adhesion Molecule-1/metabolism , Neoplasm Metastasis , Drug Resistance, Neoplasm
19.
Mol Med ; 28(1): 122, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217108

ABSTRACT

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Subject(s)
Biomarkers , COVID-19 , Biomarkers/blood , COVID-19/complications , Case-Control Studies , Endoglin , Female , Humans , Integrin alpha4beta1 , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 1 , Neovascularization, Pathologic , Platelet Endothelial Cell Adhesion Molecule-1 , Thrombomodulin , Vascular Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor D , Post-Acute COVID-19 Syndrome
20.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113427

ABSTRACT

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Subject(s)
Drug Design , Integrin alpha4beta1 , Protein Conformation , Serine , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...