Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
Int J Biol Macromol ; 264(Pt 2): 130693, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458291

ABSTRACT

The accessory proteins of coronaviruses play a crucial role in facilitating virus-host interactions and modulating host immune responses. Previous study demonstrated that the NS7a protein of porcine deltacoronavirus (PDCoV) partially hindered the host immune response by impeding the induction of IFN-α/ß. However, the potential additional functions of NS7a protein in evading innate immunity have yet to be elucidated. This study aimed to investigate the mechanism of PDCoV NS7a protein regulating the JAK/STAT signaling pathway. We presented evidence that NS7a effectively inhibited ISRE promoter activity and ISGs transcription. NS7a hindered STAT1 phosphorylation, interacted with STAT2 and IRF9, and further impeded the formation and nuclear accumulation of ISGF3. Furthermore, comparative analysis of NS7a across different PDCoV strains revealed that the mutation of Leu4 to Pro4 led to an increase in the molecular weights of NS7a and disrupted its inhibition on the JAK/STAT signaling pathway. This finding implied that NS7a with key amino acids may be an indicator of virulence for PDCoV strains. Taken together, this study revealed a novel role of NS7a in antagonizing the IFN-I signaling pathway.


Subject(s)
Deltacoronavirus , Janus Kinases , Signal Transduction , Animals , Swine , Janus Kinases/genetics , STAT Transcription Factors/genetics , Interferon-Stimulated Gene Factor 3
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139463

ABSTRACT

In addition to the canonical ISGF3 and non-canonical STAT2/IRF9 complexes, evidence is emerging of the role of their unphosphorylated counterparts in IFN-dependent and -independent ISG transcription. To better understand the relation between ISGF3 and U-ISGF3 and STAT2/IRF9 and U-STAT2/IRF9 in IFN-I-stimulated transcriptional responses, we performed RNA-Seq and ChIP-Seq, in combination with phosphorylation inhibition and antiviral experiments. First, we identified a group of ISRE-containing ISGs that were commonly regulated in IFNα-treated WT and STAT1-KO cells. Thus, in 2fTGH and Huh7.5 WT cells, early and long-term IFNα-inducible transcription and antiviral activity relied on the DNA recruitment of the ISGF3 components STAT1, STAT2 and IRF9 in a phosphorylation- and time-dependent manner. Likewise, in ST2-U3C and Huh-STAT1KO cells lacking STAT1, delayed IFN responses correlated with DNA binding of phosphorylated STAT2/IRF9 but not U-STAT2/IRF9. In addition, comparative experiments in U3C (STAT1-KO) cells overexpressing all the ISGF3 components (ST1-ST2-IRF9-U3C) revealed U-ISGF3 (and possibly U-STAT2/IRF9) chromatin interactions to correlate with phosphorylation-independent ISG transcription and antiviral activity. Together, our data point to the dominant role of the canonical ISGF3 and non-canonical STAT2/IRF9, without a shift to U-ISGF3 or U-STAT2/IRF9, in the regulation of early and prolonged ISG expression and viral protection. At the same time, they suggest the threshold-dependent role of U-ISFG3, and potentially U-STAT2/IRF9, in the regulation of constitutive and possibly long-term IFNα-dependent responses.


Subject(s)
Interferon Type I , Interferon-Stimulated Gene Factor 3 , Interleukin-1 Receptor-Like 1 Protein , STAT2 Transcription Factor , Antiviral Agents/pharmacology , DNA/pharmacology , Immunoglobulins/metabolism , Interferon Type I/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Signal Transduction , STAT1 Transcription Factor/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , STAT2 Transcription Factor/metabolism , Humans
3.
Trends Cancer ; 9(1): 83-92, 2023 01.
Article in English | MEDLINE | ID: mdl-36216730

ABSTRACT

Acute exposure of cancer cells to high concentrations of type I interferon (IFN-I) drives growth arrest and apoptosis, whereas chronic exposure to low concentrations provides important prosurvival advantages. Tyrosine-phosphorylated IFN-stimulated gene (ISG) factor 3 (ISGF3) drives acute deleterious responses to IFN-I, whereas unphosphorylated (U-)ISGF3, lacking tyrosine phosphorylation, drives essential constitutive prosurvival mechanisms. Surprisingly, programmed cell death-ligand 1 (PD-L1), often expressed on the surfaces of tumor cells and well recognized for its importance in inactivating cytotoxic T cells, also has important cell-intrinsic protumor activities, including dampening acute responses to cytotoxic high levels of IFN-I and sustaining the expression of the low levels that benefit tumors. More thorough understanding of the newly recognized complex roles of IFN-I in cancer may lead to the identification of novel therapeutic strategies.


Subject(s)
Interferons , Neoplasms , Humans , Interferons/metabolism , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Signal Transduction , Tyrosine , Neoplasms/drug therapy , Neoplasms/genetics
4.
Signal Transduct Target Ther ; 6(1): 376, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34737296

ABSTRACT

Patients with chronic hepatitis B (CHB) undergoing interferon (IFN)-α-based therapies often exhibit a poor HBeAg serological response. Thus, there is an unmet need for new therapies aimed at CHB. This study comprised two clinical trials, including 130 CHB patients, who were treatment-naïve; in the first, 92 patients were systematically analyzed ex vivo for interleukin-2 receptor (IL-2R) expression and inhibitory molecules expression after receiving Peg-IFN-α-2b therapy. In our second clinical trial, 38 non-responder patients, in whom IFN-α therapy had failed, were treated with or without low-dose IL-2 for 24 weeks. We then examined the hepatitis B virus (HBV)-specific CD8+ T-cell response and the clinical outcome, in these patients. Although the majority of the participants undergoing Peg-IFN-α-2b therapy were non-responders, we observed a decrease in CD25 expression on their CD4+ T cells, suggesting that IFN-α therapy may provide a rationale for sequential IL-2 treatment without increasing regulatory T cells (Tregs). Following sequential therapy with IL-2, we demonstrated that the non-responders experienced a decrease in the numbers of Tregs and programmed cell death protein 1 (PD-1) expression. In addition, sequential IL-2 administration rescued effective immune function, involving signal transducer and activator of transcription 1 (STAT1) activation. Importantly, IL-2 therapy significantly increased the frequency and function of HBV-specific CD8+ T cells, which translated into improved clinical outcomes, including HBeAg seroconversion, among the non-responder CHB patients. Our findings suggest that sequential IL-2 therapy shows efficacy in rescuing immune function in non-responder patients with refractory CHB.


Subject(s)
Hepatitis B, Chronic/drug therapy , Interferon-alpha/administration & dosage , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2/administration & dosage , Recombinant Proteins/administration & dosage , Adolescent , Adult , Aged , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Female , Gene Expression Regulation/drug effects , Hepatitis B e Antigens/blood , Hepatitis B virus/drug effects , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Humans , Interferon-Stimulated Gene Factor 3/genetics , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit/blood , Male , Middle Aged , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes, Regulatory/drug effects , Young Adult
6.
Front Immunol ; 12: 651254, 2021.
Article in English | MEDLINE | ID: mdl-33897699

ABSTRACT

Interferon ß (IFN-ß) signaling activates the transcription factor complex ISGF3 to induce gene expression programs critical for antiviral defense and host immune responses. It has also been observed that IFN-ß activates a second transcription factor complex, γ-activated factor (GAF), but the significance of this coordinated activation is unclear. We report that in murine lung epithelial cells (MLE12) high doses of IFN-ß indeed activate both ISGF3 and GAF, which bind to distinct genomic locations defined by their respective DNA sequence motifs. In contrast, low doses of IFN-ß preferentially activate ISGF3 but not GAF. Surprisingly, in MLE12 cells GAF binding does not induce nearby gene expression even when strongly bound to the promoter. Yet expression of interferon stimulated genes is enhanced when GAF and ISGF3 are both active compared to ISGF3 alone. We propose that GAF may function as a dose-sensitive amplifier of ISG expression to enhance antiviral immunity and establish pro-inflammatory states.


Subject(s)
Epithelial Cells/immunology , Gene Expression Regulation/immunology , Interferon-Stimulated Gene Factor 3/metabolism , Interferon-beta/metabolism , STAT1 Transcription Factor/metabolism , Animals , Cell Line , Chromatin Immunoprecipitation Sequencing , Dose-Response Relationship, Immunologic , Epithelial Cells/metabolism , Mice , Promoter Regions, Genetic/genetics , Protein Multimerization/immunology , RNA-Seq
7.
J Transl Med ; 18(1): 452, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256749

ABSTRACT

BACKGROUND: Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-ß, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. METHODS: ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1ß relative potency were then employed to confirm the involvement of enriched pathways and TFs. RESULTS: LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1ß, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1ß release. CONCLUSION: In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.


Subject(s)
Cytokines/metabolism , Inflammation/prevention & control , Leukocytes, Mononuclear/drug effects , Serum Albumin, Human/pharmacology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Lymphocyte Activation/drug effects , Molecular Weight , NF-kappa B/metabolism , Serum Albumin, Human/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factors/metabolism , COVID-19 Drug Treatment
8.
Front Immunol ; 11: 2189, 2020.
Article in English | MEDLINE | ID: mdl-33042133

ABSTRACT

Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1ß isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1ß (Stat1ß/ß ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1ß/ß mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1ß/ß mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1ß/ß mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.


Subject(s)
Killer Cells, Natural/cytology , Lymphopoiesis/physiology , STAT1 Transcription Factor/immunology , Animals , Bone Marrow Transplantation , Cell Line, Tumor , Cytotoxicity, Immunologic , Immunologic Surveillance/drug effects , Immunologic Surveillance/immunology , Interferon-Stimulated Gene Factor 3/deficiency , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3/immunology , Interleukin-15/pharmacology , Interleukin-15 Receptor alpha Subunit , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Depletion , Lymphoid Tissue/cytology , Lymphoma/immunology , Lymphoma/pathology , Lymphopoiesis/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Protein Isoforms/genetics , Protein Isoforms/immunology , Receptors, Interferon/deficiency , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Specific Pathogen-Free Organisms , Spleen/cytology , Interferon gamma Receptor
9.
Vet Immunol Immunopathol ; 219: 109971, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31739157

ABSTRACT

Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/ß induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.


Subject(s)
Endothelial Cells/immunology , Herpesvirus 4, Equid/immunology , Host Microbial Interactions/immunology , Immunity, Innate , Interferon Type I/immunology , Animals , Cells, Cultured , Endothelial Cells/virology , Herpesvirus 4, Equid/pathogenicity , Horse Diseases/immunology , Horse Diseases/virology , Horses , Interferon-Stimulated Gene Factor 3/immunology , Interferon-alpha/immunology , Interferon-beta/immunology , Phosphorylation , Pulmonary Artery/cytology , STAT2 Transcription Factor/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology
10.
Cytokine ; 126: 154870, 2020 02.
Article in English | MEDLINE | ID: mdl-31629105

ABSTRACT

Interferon stimulated genes (ISGs), a collection of genes important in the early innate immune response, are upregulated in response to stimulation by extracellular type I interferons. The regulation of ISGs has been extensively studied in cells exposed to significant interferon stimulation, but less is known about ISG regulation in homeostatic regimes in which extracellular interferon levels are low. Using a collection of pre-existing, publicly available microarray datasets, we investigated ISG regulation at homeostasis in CD4, pulmonary epithelial, fibroblast and macrophage cells. We used a linear regression model to predict ISG expression levels from regulator expression levels. Our results suggest significant regulation of ISG expression at homeostasis, both through the ISGF3 molecule and through IRF7 and IRF8 associated pathways. We find that roughly 50% of ISGs have expression levels significantly correlated with ISGF3 expression levels at homeostasis, supporting previous results suggesting that homeostatic IFN levels have broad functional consequences. We find that ISG expression levels varied in their correlation with ISGF3, with epithelial and macrophage cells showing more correlation than CD4 and fibroblast cells. Our analysis provides a novel approach for decomposing and quantifying ISG regulation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Epithelial Cells/metabolism , Fibroblasts/metabolism , Immunity, Innate , Interferon Type I/pharmacology , Macrophages/metabolism , Animals , Databases, Protein , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Homeostasis , Humans , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3/metabolism , Linear Models , Mice , Oligonucleotide Array Sequence Analysis , Signal Transduction/drug effects , Signal Transduction/genetics
11.
Nat Commun ; 10(1): 2921, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266943

ABSTRACT

Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA.


Subject(s)
Gene Expression Regulation , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Interferons/metabolism , STAT2 Transcription Factor/metabolism , Animals , Female , Humans , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , RAW 264.7 Cells , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Transcription, Genetic
12.
Front Immunol ; 10: 582, 2019.
Article in English | MEDLINE | ID: mdl-30984174

ABSTRACT

PKZ is a fish-specific protein kinase containing Zα domains. PKZ is known to induce apoptosis through phosphorylating eukaryotic initiation factor 2α kinase (eIF2α) in the same way as double-stranded RNA-dependent protein kinase (PKR), but its exact role in detecting pathogens remains to be fully elucidated. Herein, we have found that PKZ acts as a fish-specific DNA sensor by initiating IFN expression through IRF3- or ISGF3-like mediated pathways. The expression pattern of PKZ is similar to those of innate immunity mediators stimulated by poly (dA:dT) and poly (dG:dC). DNA-PKZ interaction can enhance PKZ phosphorylation and dimerization in vitro. These findings indicate that PKZ participates in cytoplasmic DNA-mediated signaling. Subcellular localization assays have also shown that PKZ is located in the cytoplasm, which suggests that PKZ acts as a cytoplasmic PRR. Meanwhile, co-IP assays have shown that PKZ can separately interact with IRF3, STING, ZDHHC1, eIF2α, IRF9, and STAT2. Further investigations have revealed that PKZ can activate IRF3 and STAT2; and that IRF3-dependent and ISGF3-like dependent mediators are critical for PKZ-induced IFN expression. These results demonstrate that PKZ acts as a special DNA pattern-recognition receptor, and that PKZ can trigger immune responses through IRF3-mediated or ISGF3-like mediated pathways in fish.


Subject(s)
Fish Proteins/immunology , Interferon Regulatory Factor-3/immunology , Interferon-Stimulated Gene Factor 3/immunology , Protein Kinases/immunology , Animals , Carps , Cells, Cultured , Female , Fish Proteins/genetics , Humans , Immunity, Innate , Kidney/cytology , Ovary/cytology , Protein Kinases/genetics
13.
Nat Metab ; 1(12): 1209-1218, 2019 12.
Article in English | MEDLINE | ID: mdl-32395698

ABSTRACT

The mammalian genome comprises nuclear DNA (nDNA) derived from both parents and mitochondrial DNA (mtDNA) that is maternally inherited and encodes essential proteins required for oxidative phosphorylation. Thousands of copies of the circular mtDNA are present in most cell types that are packaged by TFAM into higher-order structures called nucleoids1. Mitochondria are also platforms for antiviral signalling2 and, due to their bacterial origin, mtDNA and other mitochondrial components trigger innate immune responses and inflammatory pathology2,3. We showed previously that instability and cytoplasmic release of mtDNA activates the cGAS-STING-TBK1 pathway resulting in interferon stimulated gene (ISG) expression that promotes antiviral immunity4. Here, we find that persistent mtDNA stress is not associated with basally activated NF-κB signalling or interferon gene expression typical of an acute antiviral response. Instead, a specific subset of ISGs, that includes Parp9, remains activated by the unphosphorylated form of ISGF3 (U-ISGF3) that enhances nDNA damage and repair responses. In cultured primary fibroblasts and cancer cells, the chemotherapeutic drug doxorubicin causes mtDNA damage and release, which leads to cGAS-STING-dependent ISG activation. In addition, mtDNA stress in TFAM-deficient mouse melanoma cells produces tumours that are more resistant to doxorubicin in vivo. Finally, Tfam +/- mice exposed to ionizing radiation exhibit enhanced nDNA repair responses in spleen. Therefore, we propose that damage to and subsequent release of mtDNA elicits a protective signalling response that enhances nDNA repair in cells and tissues, suggesting mtDNA is a genotoxic stress sentinel.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/physiology , Genome/genetics , Animals , Cell Line, Tumor , Cytosol/metabolism , DNA Damage/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Interferon-Stimulated Gene Factor 3/genetics , Interferons/biosynthesis , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Nude , NF-kappa B/physiology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology
14.
J Immunol ; 201(7): 2070-2081, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30143585

ABSTRACT

IL-27 is a cytokine exerting pleiotropic immunomodulatory effects on a broad spectrum of immune cells. Optimal IL-27 production downstream of TLR3/4 ligand stimulation relies on autocrine type I IFN signaling, defining a first and second phase in IL-27 production. This work shows that IL-1 receptor-associated kinase 1 (IRAK1) limits TLR3/4- and IFNAR-induced IL-27 production. At the mechanistic level, we identified IRAK1 as a novel regulator of STAT1, IRF1, and IRF9. We found hyperactivation of STAT1 together with increased nuclear levels of IRF1 and IRF9 in IRAK1-deficient murine macrophages compared with control cells following stimulation with LPS and poly(I:C). IRAK1-deficient human microglial cells showed higher basal levels of STAT1 and STAT2 compared with control cells. Blocking the kinase activity of TBK1/IKKε in IRAK1 knockdown human microglial cells reduced the high basal levels of STAT1/2, uncovering a TBK1/IKKε kinase-dependent mechanism controlling basal levels of STAT1/2. Stimulating IRAK1 knockdown human microglial cells with IFN-ß led to increased IL-27p28 expression compared with control cells. In IRAK1-deficient murine macrophages, increased IL-27 levels were detected by ELISA following IFN-ß stimulation compared with control macrophages together with increased nuclear levels of p-STAT1, IRF1, and IRF9. Treatment of wild-type and IRAK1-deficient murine macrophages with fludarabine similarly reduced TLR3/4-induced IL-27 cytokine levels. To our knowledge, this work represents the first report placing IRAK1 in the IFNAR pathway and identifies IRAK1 as an important regulator of STAT1, controlling IL-27 production downstream of TLR3/4 and IFNAR signaling pathways.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-27/metabolism , Macrophages/metabolism , Microglia/metabolism , Receptor, Interferon alpha-beta/metabolism , Animals , HEK293 Cells , Humans , Interferon-Stimulated Gene Factor 3/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Mice , Phosphorylation , Receptor, Interferon alpha-beta/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism
15.
Front Immunol ; 9: 1135, 2018.
Article in English | MEDLINE | ID: mdl-29892288

ABSTRACT

Interferon (IFN)-I and IFN-II both induce IFN-stimulated gene (ISG) expression through Janus kinase (JAK)-dependent phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT2. STAT1 homodimers, known as γ-activated factor (GAF), activate transcription in response to all types of IFNs by direct binding to IFN-II activation site (γ-activated sequence)-containing genes. Association of interferon regulatory factor (IRF) 9 with STAT1-STAT2 heterodimers [known as interferon-stimulated gene factor 3 (ISGF3)] or with STAT2 homodimers (STAT2/IRF9) in response to IFN-I, redirects these complexes to a distinct group of target genes harboring the interferon-stimulated response element (ISRE). Similarly, IRF1 regulates expression of ISGs in response to IFN-I and IFN-II by directly binding the ISRE or IRF-responsive element. In addition, evidence is accumulating for an IFN-independent and -dependent role of unphosphorylated STAT1 and STAT2, with or without IRF9, and IRF1 in basal as well as long-term ISG expression. This review provides insight into the existence of an intracellular amplifier circuit regulating ISG expression and controlling long-term cellular responsiveness to IFN-I and IFN-II. The exact timely steps that take place during IFN-activated feedback regulation and the control of ISG transcription and long-term cellular responsiveness to IFN-I and IFN-II is currently not clear. Based on existing literature and our novel data, we predict the existence of a multifaceted intracellular amplifier circuit that depends on unphosphorylated and phosphorylated ISGF3 and GAF complexes and IRF1. In a combinatorial and timely fashion, these complexes mediate prolonged ISG expression and control cellular responsiveness to IFN-I and IFN-II. This proposed intracellular amplifier circuit also provides a molecular explanation for the existing overlap between IFN-I and IFN-II activated ISG expression.


Subject(s)
Feedback, Physiological , Interferon Regulatory Factors/genetics , Interferon-Stimulated Gene Factor 3/genetics , Interferons/metabolism , Animals , Gene Expression Regulation , Genome-Wide Association Study , Germ-Line Mutation , Humans , Interferon Regulatory Factors/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Mutation , Protein Binding , STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/chemistry , STAT2 Transcription Factor/metabolism
16.
Cell Death Dis ; 8(10): e3077, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28981100

ABSTRACT

STAT1, which carries tumor suppressor functions in several models, consists of two isoforms, namely STAT1α and STAT1ß. The biological function and significance of STAT1ß has never been examined in human cancer. We examined STAT1ß function in esophageal squamous cell carcinoma (ESCC) by transfecting a STAT1ß gene into various ESCC cell lines. The interaction between STAT1α and STAT1ß was examined by using co-immunoprecipitation and confocal microscopy. The prognostic significance of STAT1ß expression, detectable by immunohistochemistry and western blot, was evaluated in a large cohort of ESCC patients. Enforced expression of STAT1ß induced and prolonged the expression and phosphorylation of STAT1α in ESCC cells, and these effects were amplified by gamma-interferon (IFN-γ). We also found that STAT1ß interacts with STAT1α and decreases STAT1α degradation by the proteasome. Moreover, STAT1ß substantially increased the DNA binding and transcription activity of STAT1. STAT1ß also sensitized ESCC cells to chemotherapeutic agents, including cisplatin and 5-flurouracil. Using western blot and immunohistochemistry, we found that STAT1ß was frequently decreased in esophageal cancer, as compared to their adjacent benign esophageal epithelial tissue. Loss of STAT1ß significantly correlated with lymph node metastasis, invasion and shorter overall survival in ESCC patients. Therefore, STAT1ß plays a key role in enhancing the tumor suppressor function of STAT1α, in ESCC, in a manner that can be amplified by IFN-γ.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Esophageal Neoplasms/drug therapy , Interferon-Stimulated Gene Factor 3/genetics , Interferon-gamma/genetics , STAT1 Transcription Factor/genetics , Aged , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cisplatin/administration & dosage , Disease-Free Survival , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphatic Metastasis , Male , Middle Aged , Phosphorylation , Protein Isoforms/genetics , Proteolysis/drug effects , Transcriptional Activation/drug effects
17.
PLoS Genet ; 13(10): e1007051, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29028794

ABSTRACT

LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.


Subject(s)
Cell Cycle Proteins/genetics , Interferon-gamma/genetics , Long Interspersed Nucleotide Elements/genetics , Nuclear Proteins/genetics , Adenosine Triphosphatases/genetics , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Genome, Human , Humans , Interferon-Stimulated Gene Factor 3/genetics , Multiprotein Complexes/genetics , Protein Binding , Protein Synthesis Inhibitors , RNA, Messenger/genetics , Retroelements/genetics
18.
Mediators Inflamm ; 2017: 8302636, 2017.
Article in English | MEDLINE | ID: mdl-28473732

ABSTRACT

Glial activation and subsequent release of neurotoxic proinflammatory factors are believed to play an important role in the pathogenesis of several neurological disorders including Parkinson's disease (PD). Inhibition of glial activation and inflammatory processes may represent a therapeutic target to alleviate neurodegeneration. Securinine, a major natural alkaloid product from the root of the plant Securinega suffruticosa, has been reported to have potent biological activity and is used in the treatment of neurological conditions such as amyotrophic lateral sclerosis, poliomyelitis, and multiple sclerosis. In this study, we explored the underlying mechanisms of neuroprotection elicited by securinine, particularly its anti-inflammatory effects in glial cells. Our results demonstrate that securinine significantly and dose-dependently suppressed the nitric oxide production in microglia and astrocytic cultures. In addition, securinine inhibited the activation of the inflammatory mediator NF-κB, as well as mitogen-activated protein kinases in lipopolysaccharide- (LPS-) stimulated BV2 cells. Additionally, securinine also inhibited interferon-γ- (IFN-γ-) induced nitric oxide levels and iNOS mRNA expression. Furthermore, conditioned media (CM) from securinine pretreated BV2 cells significantly reduced mesencephalic dopaminergic neurotoxicity compared with CM from LPS stimulated microglia. These findings suggest that securinine may be a potential candidate for the treatment of neurodegenerative diseases related to neuroinflammation.


Subject(s)
Azepines/therapeutic use , Heterocyclic Compounds, Bridged-Ring/therapeutic use , Lactones/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Piperidines/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Astrocytes/drug effects , Blotting, Western , Cell Survival/drug effects , Interferon-Stimulated Gene Factor 3/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/drug effects , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/therapeutic use , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Parkinson Disease/immunology , Phosphorylation/drug effects , Polymerase Chain Reaction
19.
Mar Biotechnol (NY) ; 19(3): 310-319, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28500614

ABSTRACT

Virus infection often causes large amounts of mortality during teleost larvae stage. Strong induction of innate immunity to increase survival rates of teleost larvae has been less reported. In this study, we present a zebrafish IRF9-Stat2 fusion protein (zIRF9-S2C) as a strong innate immunity inducer and characterized induction of interferon-stimulated genes (ISGs) in zebrafish larvae. zIRF9-S2C could mimic IFN-stimulated gene factor 3 (ISGF3) complex to constitutively activate transcription of Mx promoter through IFN-stimulatory element (ISRE) sites. Mutation of two ISRE sites on Mx promoter reduced transactivation activities of Mx promoter induced by zIRF9-S2C. An electrophoretic mobility shift assay experiment shows that zIRF9-S2C could directly bind to two ISRE sites of Mx promoter. Induction of transactivation of Mx promoter by zIRF9-S2C shows significantly higher activity than by zebrafish IFN1 (zIFN1), IFNγ (zIFNγ), and Tetraodon IRF9-S2C (TnIRF9-S2C). zIRF9-S2C raises transcription of Mxa, Mxb, Mxc, Ifnφ1, Ifnφ2, and Ifnφ3 in zebrafish liver ((ZFL) cell line) cells and zebrafish larvae. Collectively, we suggest that IRF9-S2C could activate transcription of ISGs with species-specific recognition and could be an innate immunity inducer in teleost larvae.


Subject(s)
Immunity, Innate , Myxovirus Resistance Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , STAT2 Transcription Factor/genetics , Zebrafish/metabolism , Animals , COS Cells , Chlorocebus aethiops , Gene Expression Regulation , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3/metabolism , Larva/genetics , Larva/immunology , Larva/metabolism , Myxovirus Resistance Proteins/genetics , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Signal Transduction , Transcriptional Activation , Zebrafish/genetics , Zebrafish/immunology
20.
Sci Signal ; 10(476)2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28442624

ABSTRACT

Interferon (IFN)-stimulated genes (ISGs) are antiviral effectors that are induced by IFNs through the formation of a tripartite transcription factor ISGF3, which is composed of IRF9 and phosphorylated forms of STAT1 and STAT2. However, we found that IFN-independent ISG expression was detectable in immortalized cell lines, primary intestinal and liver organoids, and liver tissues. The constitutive expression of ISGs was mediated by the unphosphorylated ISGF3 (U-ISGF3) complex, consisting of IRF9 together with unphosphorylated STAT1 and STAT2. Under homeostatic conditions, STAT1, STAT2, and IRF9 were found in the nucleus. Analysis of a chromatin immunoprecipitation sequencing data set revealed that STAT1 specifically bound to the promoters of ISGs even in the absence of IFNs. Knockdown of STAT1, STAT2, or IRF9 by RNA interference led to the decreased expression of various ISGs in Huh7.5 human liver cells, which was confirmed in mouse embryonic fibroblasts (MEFs) from STAT1-/-, STAT2-/-, or IRF9-/- mice. Furthermore, decreased ISG expression was accompanied by increased replication of hepatitis C virus and hepatitis E virus. Conversely, simultaneous overexpression of all ISGF3 components, but not any single factor, induced the expression of ISGs and inhibited viral replication; however, no phosphorylated STAT1 and STAT2 were detected. A phosphorylation-deficient STAT1 mutant was comparable to the wild-type protein in mediating the IFN-independent expression of ISGs and antiviral activity, suggesting that ISGF3 works in a phosphorylation-independent manner. These data suggest that the U-ISGF3 complex is both necessary and sufficient for constitutive ISG expression and antiviral immunity under homeostatic conditions.


Subject(s)
Hepatitis C/prevention & control , Hepatitis E/prevention & control , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo, Mammalian/virology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation/drug effects , Hepacivirus/drug effects , Hepatitis C/metabolism , Hepatitis C/virology , Hepatitis E/metabolism , Hepatitis E/virology , Hepatitis E virus/drug effects , Humans , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-alpha/pharmacology , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Intestines/virology , Liver/cytology , Liver/drug effects , Liver/metabolism , Liver/virology , Mice , Mice, Knockout , Phosphorylation/drug effects , STAT1 Transcription Factor/genetics , STAT2 Transcription Factor/genetics , Signal Transduction/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...