Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
J Transl Med ; 22(1): 439, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720389

ABSTRACT

Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Interleukin Receptor Common gamma Subunit , MicroRNAs , Female , Humans , Male , Middle Aged , Base Sequence , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , HEK293 Cells , Immunotherapy , Interleukin Receptor Common gamma Subunit/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis
2.
Nature ; 629(8011): 426-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38658764

ABSTRACT

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes , Dinoprostone , Interleukin Receptor Common gamma Subunit , Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Mitochondria , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype , Signal Transduction , Humans , Dinoprostone/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Signal Transduction/drug effects , Interleukin-2/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Interleukin-2 Receptor beta Subunit/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Proliferation/drug effects , Animals , Mice , Down-Regulation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
3.
Science ; 381(6657): 569-576, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535730

ABSTRACT

Common γ chain (γc) cytokine receptors, including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 receptors, are activated upon engagement with a common γc receptor (CD132) by concomitant binding of their ectodomains to an interleukin. In this work, we find that direct interactions between the transmembrane domains (TMDs) of both the γc and the interleukin receptors (ILRs) are also required for receptor activation. Moreover, the same γc TMD can specifically recognize multiple ILR TMDs of diverse sequences within the family. Heterodimer structures of γc TMD bound to IL-7 and IL-9 receptor TMDs-determined in a lipid bilayer-like environment by nuclear magnetic resonance spectroscopy-reveal a conserved knob-into-hole mechanism of recognition that mediates receptor sharing within the membrane. Thus, signaling in the γc receptor family requires specific heterotypic interactions of the TMDs.


Subject(s)
Interleukin Receptor Common gamma Subunit , Interleukin-7 Receptor alpha Subunit , Protein Interaction Domains and Motifs , Interleukin Receptor Common gamma Subunit/chemistry , Interleukin Receptor Common gamma Subunit/genetics , Protein Binding , Signal Transduction , Nuclear Magnetic Resonance, Biomolecular , Interleukin-7 Receptor alpha Subunit/chemistry , Interleukin-7 Receptor alpha Subunit/genetics
4.
J Med Case Rep ; 17(1): 307, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37461086

ABSTRACT

BACKGROUND: X-linked severe combined immunodeficiency is caused by IL2RG gene mutation. Several variations have been identified in the IL2RG gene, which potentially can prevent the production of nonfunctional proteins. Herein, a novel X-linked variant in the IL2RG gene is reported in twin brothers, associated with inflammatory bowel symptoms. CASE PRESENTATION: The patients were 26-month-old monozygotic twin middle-eastern males with failure to thrive and several inpatient admissions due to severe chronic nonbloody diarrhea that started at the age of 12 months. Pancolitis was revealed after performing upper and lower gastrointestinal endoscopies on the twin with more severe gastrointestinal symptoms. Flow cytometric evaluation of the peripheral blood cells showed low levels of CD4+ cells in both patients. Next generation sequencing-based gene panel test results of the two patients proved a novel heterozygous missense X-linked IL2RG mutation (70330011 A > G, p.Trp197Arg) in one of the patients, which was predicted to be deleterious (CADD score of 28), which soon after was confirmed by Sanger segregation in his twin brother. Both parents were wild types and had never experienced similar symptoms. The patients received an human leukocyte antigen (HLA)-matched cord blood transplant. The twin with more severe gastrointestinal symptoms died 1 month after transplantation. In his brother, watery diarrhea eventually subsided after transplantation. CONCLUSION: Intestinal involvement in X-linked severe combined immunodeficiency is a rare presentation that might be neglected. The increasing availability of genetic screening tests worldwide could be helpful for early detection of such lethal primary immunodeficiency diseases and in implementing effective interventions to handle the severe outcomes.


Subject(s)
Inflammatory Bowel Diseases , X-Linked Combined Immunodeficiency Diseases , Male , Humans , Infant , Child, Preschool , X-Linked Combined Immunodeficiency Diseases/genetics , Siblings , Mutation , Inflammatory Bowel Diseases/genetics , Diarrhea/genetics , Interleukin Receptor Common gamma Subunit/genetics
5.
J Clin Immunol ; 43(2): 358-370, 2023 02.
Article in English | MEDLINE | ID: mdl-36260239

ABSTRACT

Abnormally high γδ T cell numbers among individuals with atypical SCID have been reported but detailed immunophenotyping and functional characterization of these expanded γδ T cells are limited. We have previously reported atypical SCID phenotype caused by hypomorphic IL2RG (NM_000206.3) c.172C > T;p.(Pro58Ser) variant. Here, we have further investigated the index patient's abnormally large γδ T cell population in terms of function and phenotype by studying IL2RG cell surface expression, STAT tyrosine phosphorylation and blast formation in response to interleukin stimulation, immunophenotyping, TCRvγ sequencing, and target cell killing. In contrast to his âºß T cells, the patient's γδ T cells showed normal IL2RG cell surface expression and normal or enhanced IL2RG-mediated signaling. Vδ2 + population was proportionally increased with a preponderance of memory phenotypes and high overall tendency towards perforin expression. The patient's γδ T cells showed enhanced cytotoxicity towards A549 cancer cells. His TCRvγ repertoire was versatile but sequencing of IL2RG revealed a novel c.534C > A; p.(Phe178Leu) somatic missense variant restricted to γδ T cells. Over time this variant became predominant in γδ T cells, though initially present only in part of them. IL2RG-Pro58Ser/Phe178Leu variant showed higher cell surface expression compared to IL2RG-Pro58Ser variant in stable HEK293 cell lines, suggesting that somatic p.(Phe178Leu) variant may at least partially rescue the pathogenic effect of germline p.(Pro58Ser) variant. In conclusion, our report indicates that expansion of γδ T cells associated with atypical SCID needs further studying and cannot exclusively be deemed as a homeostatic response to low numbers of conventional T cells.


Subject(s)
Intraepithelial Lymphocytes , Severe Combined Immunodeficiency , X-Linked Combined Immunodeficiency Diseases , Humans , X-Linked Combined Immunodeficiency Diseases/genetics , Intraepithelial Lymphocytes/pathology , HEK293 Cells , Receptors, Antigen, T-Cell, gamma-delta/genetics , Interleukin Receptor Common gamma Subunit/genetics
6.
FASEB J ; 36(9): e22476, 2022 09.
Article in English | MEDLINE | ID: mdl-35959876

ABSTRACT

Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.


Subject(s)
Immunity, Innate , Interleukin-15 , Animals , Disease Models, Animal , Humans , Interleukin Receptor Common gamma Subunit/genetics , Interleukin-15/genetics , Killer Cells, Natural , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
7.
PLoS One ; 17(8): e0272950, 2022.
Article in English | MEDLINE | ID: mdl-35960733

ABSTRACT

Immunodeficient animals are valuable models for the engraftment of exogenous tissues; they are widely used in many fields, including the creation of humanized animal models, as well as regenerative medicine and oncology. Compared with mice, laboratory rats have a larger body size and can more easily undergo transplantation of various tissues and organs. Considering the absence of high-quality resources of immunodeficient rats, we used the CRISPR/Cas9 genome editing system to knock out the interleukin-2 receptor gamma chain gene (Il2rg) in F344/Jcl rats-alone or together with recombination activating gene 2 (Rag2)-to create a high-quality bioresource that researchers can freely use: severe combined immunodeficiency (SCID) rats. We selected one founder rat with frame-shift mutations in both Il2rg (5-bp del) and Rag2 ([1-bp del+2-bp ins]/[7-bp del+2-bp ins]), then conducted mating to establish a line of immunodeficient rats. The immunodeficiency phenotype was preliminarily confirmed by the presence of severe thymic hypoplasia in Il2rg-single knockout (sKO) and Il2rg/Rag2-double knockout (dKO) rats. Assessment of blood cell counts in peripheral blood showed that the white blood cell count was significantly decreased in sKO and dKO rats, while the red blood cell count was unaffected. The decrease in white blood cell count was mainly caused by a decrease in lymphocytes. Furthermore, analyses of lymphocyte populations via flow cytometry showed that the numbers of B cells (CD3- CD45+) and natural killer cells (CD3- CD161+) were markedly reduced in both knockout rats. In contrast, T cells were markedly reduced but showed slightly different results between sKO and dKO rats. Notably, our immunodeficient rats do not exhibit growth retardation or gametogenesis defects. This high-quality SCID rat resource is now managed by the National BioResource Project in Japan. Our SCID rat model has been used in various research fields, demonstrating its importance as a bioresource.


Subject(s)
Severe Combined Immunodeficiency , Animals , Gene Editing , Interleukin Receptor Common gamma Subunit/genetics , Mice , Mice, SCID , Rats , Rats, Inbred F344 , Severe Combined Immunodeficiency/genetics , T-Lymphocytes
8.
Front Immunol ; 13: 950194, 2022.
Article in English | MEDLINE | ID: mdl-36032112

ABSTRACT

Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.


Subject(s)
Disease Models, Animal , Liver Diseases , Animals , Animals, Genetically Modified , DNA-Binding Proteins/genetics , Gene Knockout Techniques , Hepatocytes , Humans , Interleukin Receptor Common gamma Subunit/genetics , Nuclear Proteins/genetics , Swine , Swine, Miniature
9.
Nature ; 607(7918): 360-365, 2022 07.
Article in English | MEDLINE | ID: mdl-35676488

ABSTRACT

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rß-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
10.
Blood ; 139(17): 2585-2600, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35157765

ABSTRACT

Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.


Subject(s)
Severe Combined Immunodeficiency , Dysbiosis , Humans , Immunity, Innate , Immunity, Mucosal , Immunoglobulin A , Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Lymphocytes/metabolism , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
11.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732575

ABSTRACT

Triplex gene editing relies on binding a stable peptide nucleic acid (PNA) sequence to a chromosomal target, which alters the helical structure of DNA to stimulate site-specific recombination with a single-strand DNA (ssDNA) donor template and elicits gene correction. Here, we assessed whether the codelivery of PNA and donor template encapsulated in Poly Lactic-co-Glycolic Acid (PLGA)-based nanoparticles can correct sickle cell disease and x-linked severe combined immunodeficiency. However, through this process we have identified a false-positive PCR artifact due to the intrinsic capability of PNAs to aggregate with ssDNA donor templates. Here, we show that the combination of PNA and donor templates but not either agent alone results in different degrees of aggregation that result in varying but highly reproducible levels of false-positive signal. We have identified this phenomenon in vitro and confirmed that the PNA sequences producing the highest supposed correction in vitro are not active in vivo in both disease models, which highlights the importance of interrogating and eliminating carryover of ssDNA donor templates in assessing various gene editing technologies such as PNA-mediated gene editing.


Subject(s)
Gene Editing/methods , Anemia, Sickle Cell/genetics , Animals , False Positive Reactions , Interleukin Receptor Common gamma Subunit/genetics , Mice, SCID , Molecular Probe Techniques , Peptide Nucleic Acids , Polylactic Acid-Polyglycolic Acid Copolymer
12.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34709349

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are unique in their ability to produce low levels of type 2 cytokines at steady state, and their production capacity is dramatically increased upon stimulation with IL-33. However, it is unknown how constitutive cytokine production is regulated in the steady state. Here, we found that tristetraprolin (TTP/Zfp36), an RNA-binding protein that induces mRNA degradation, was highly expressed in naive ILC2s and was downregulated following IL-33 stimulation. In ILC2s from Zfp36-/- mice, constitutive IL-5 production was elevated owing to the stabilization of its mRNA and resulted in an increased number of eosinophils in the intestine. Luciferase assay demonstrated that TTP directly regulates Il5 mRNA stability, and overexpression of TTP markedly suppressed IL-5 production by ILC2s, even under IL-33 stimulation. Collectively, TTP-mediated posttranscriptional regulation acts as a deterrent of excessive cytokine production in steady-state ILC2s to maintain body homeostasis, and downregulation of TTP may contribute to massive cytokine production under IL-33 stimulation.


Subject(s)
Lymphocytes/physiology , Tristetraprolin/metabolism , Animals , Cytokines/metabolism , DNA-Binding Proteins/genetics , Female , Homeostasis , Immunity, Innate , Interleukin Receptor Common gamma Subunit/genetics , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukin-5/genetics , Interleukin-5/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Tristetraprolin/genetics
13.
Front Immunol ; 12: 734246, 2021.
Article in English | MEDLINE | ID: mdl-34691041

ABSTRACT

T-cell therapy with T cells that are re-directed to hepatitis B virus (HBV)-infected cells by virus-specific receptors is a promising therapeutic approach for treatment of chronic hepatitis B and HBV-associated cancer. Due to the high number of target cells, however, side effects such as cytokine release syndrome or hepatotoxicity may limit safety. A safeguard mechanism, which allows depletion of transferred T cells on demand, would thus be an interesting means to increase confidence in this approach. In this study, T cells were generated by retroviral transduction to express either an HBV-specific chimeric antigen receptor (S-CAR) or T-cell receptor (TCR), and in addition either inducible caspase 9 (iC9) or herpes simplex virus thymidine kinase (HSV-TK) as a safety switch. Real-time cytotoxicity assays using HBV-replicating hepatoma cells as targets revealed that activation of both safety switches stopped cytotoxicity of S-CAR- or TCR-transduced T cells within less than one hour. In vivo, induction of iC9 led to a strong and rapid reduction of transferred S-CAR T cells adoptively transferred into AAV-HBV-infected immune incompetent mice. One to six hours after injection of the iC9 dimerizer, over 90% reduction of S-CAR T cells in the blood and the spleen and of over 99% in the liver was observed, thereby limiting hepatotoxicity and stopping cytokine secretion. Simultaneously, however, the antiviral effect of S-CAR T cells was diminished because remaining S-CAR T cells were mostly non-functional and could not be restimulated with HBsAg. A second induction of iC9 was only able to deplete T cells in the liver. In conclusion, T cells co-expressing iC9 and HBV-specific receptors efficiently recognize and kill HBV-replicating cells. Induction of T-cell death via iC9 proved to be an efficient means to deplete transferred T cells in vitro and in vivo containing unwanted hepatotoxicity.


Subject(s)
Adoptive Transfer , Caspase 9/biosynthesis , Hepatitis B Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/therapy , T-Lymphocytes/transplantation , Adoptive Transfer/adverse effects , Animals , Caspase 9/genetics , Cell Death , Cell Line , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Enzyme Induction , Female , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Humans , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Simplexvirus/enzymology , Simplexvirus/genetics , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Thymidine Kinase/genetics , Thymidine Kinase/metabolism , Transduction, Genetic
14.
Adv Sci (Weinh) ; 8(19): e2101188, 2021 10.
Article in English | MEDLINE | ID: mdl-34382351

ABSTRACT

Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah-/- Rag2-/- IL2rg-/- (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 ± 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.


Subject(s)
DNA-Binding Proteins/metabolism , Hepatocytes/metabolism , Hydrolases/metabolism , Interleukin Receptor Common gamma Subunit/metabolism , Liver/metabolism , Nuclear Proteins/metabolism , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Humans , Hydrolases/genetics , Interleukin Receptor Common gamma Subunit/genetics , Nuclear Proteins/genetics , Rats
15.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415995

ABSTRACT

T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.


Subject(s)
Immunotherapy/methods , Rhabdomyosarcoma/therapy , Single-Cell Analysis/methods , Xenograft Model Antitumor Assays/methods , Zebrafish/genetics , Adolescent , Adult , Animals , Animals, Genetically Modified , Child , Child, Preschool , DNA-Binding Proteins/genetics , ErbB Receptors/immunology , Female , Humans , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit/genetics , Male , Mice, Inbred Strains , Phthalazines/pharmacology , Piperazines/pharmacology , Rhabdomyosarcoma/pathology , T-Lymphocytes/immunology , Temozolomide/pharmacology , Tumor Cells, Cultured , Zebrafish Proteins/genetics
16.
Front Immunol ; 12: 677970, 2021.
Article in English | MEDLINE | ID: mdl-34248959

ABSTRACT

Objective: The contribution of sustained autologous autoantibody production by B cells to the pathogenesis of systemic sclerosis (SSc) and granulomatosis with polyangiitis (GPA) is not fully understood. To investigate this, a humanized mouse model was generated by transferring patient-derived peripheral blood mononuclear cells (PBMC) into immunocompromised mice. Methods: PBMC derived from patients with SSc and GPA as well as healthy controls (HD) were isolated, characterized by flow cytometry, and infused into Rag2-/-/IL2rg-/- mice. In addition, PBMC from SSc patients treated with rituximab were transferred into mice. Twelve weeks later, human autoantibodies were determined in blood of the recipient mice and affected tissues were analyzed for pathological changes by histology and immunohistochemistry. Results: Mice engrafted with PBMC derived from SSc patients developed autoantibodies such as antinuclear antibodies (ANA) mimicking the pattern of the respective donors. Moreover, cellular infiltrates dominated by B cells were observed in lung, kidney and muscles of the recipient mice. By contrast, PBMC derived from HD or GPA patients survived in recipient mice after transfer, but neither human autoantibodies nor inflammatory infiltrates in tissues were detected. Furthermore, these pathological changes were absent in mice transferred with PBMC from rituximab-treated SSc patients. Conclusion: This humanized mouse model is indicative for cross-reactivity of human lymphocytes to murine autoantigens and argues for a pivotal role of B cells as well as of sustained autoimmunity in the pathogenesis of SSc. It provides a powerful tool to study interstitial lung disease and so far, under-recognized disease manifestations such as myositis and interstitial nephritis.


Subject(s)
Antibodies, Antinuclear/immunology , DNA-Binding Proteins/metabolism , Granulomatosis with Polyangiitis/blood , Interleukin Receptor Common gamma Subunit/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/transplantation , Scleroderma, Systemic/blood , Adult , Aged , Animals , Antibodies, Antinuclear/blood , B-Lymphocytes/immunology , Cross Reactions , DNA-Binding Proteins/genetics , Female , Granulomatosis with Polyangiitis/immunology , Humans , Immunocompromised Host , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunologic Factors/therapeutic use , Inflammation/immunology , Interleukin Receptor Common gamma Subunit/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Models, Animal , Rituximab/therapeutic use , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Treatment Outcome , Young Adult
17.
Front Immunol ; 12: 696350, 2021.
Article in English | MEDLINE | ID: mdl-34248995

ABSTRACT

X-linked severe combined immunodeficiency (X-SCID) is caused by mutations of IL2RG, the gene encoding the interleukin common gamma chain (IL-2Rγ or γc) of cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Hypomorphic mutations of IL2RG may cause combined immunodeficiencies with atypical clinical and immunological presentations. Here, we report a clinical, immunological, and functional characterization of a missense mutation in exon 1 (c.115G>A; p. Asp39Asn) of IL2RG in a 7-year-old boy. The patient suffered from recurrent sinopulmonary infections and refractory eczema. His total lymphocyte counts have remained normal despite skewed T cell subsets, with a pronounced serum IgE elevation. Surface expression of IL-2Rγ was reduced on his lymphocytes. Signal transducer and activator of transcription (STAT) phosphorylation in response to IL-2, IL-4, and IL-7 showed a partially preserved receptor function. T-cell proliferation in response to mitogens and anti-CD3/anti-CD28 monoclonal antibodies was significantly reduced. Further analysis revealed a decreased percentage of CD4+ T cells capable of secreting IFN-γ, but not IL-4 or IL-17. Studies on the functional consequences of IL-2Rγ variants are important to get more insight into the pathogenesis of atypical phenotypes which may lay the ground for novel therapeutic strategies.


Subject(s)
Interleukin Receptor Common gamma Subunit/genetics , Job Syndrome/genetics , Mutation, Missense , X-Linked Combined Immunodeficiency Diseases/genetics , Cell Proliferation , Child , Genetic Predisposition to Disease , Humans , Interleukin Receptor Common gamma Subunit/metabolism , Job Syndrome/diagnosis , Job Syndrome/immunology , Lymphocyte Activation , Male , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , X-Linked Combined Immunodeficiency Diseases/diagnosis , X-Linked Combined Immunodeficiency Diseases/immunology
18.
Front Immunol ; 12: 644687, 2021.
Article in English | MEDLINE | ID: mdl-33959125

ABSTRACT

Mutations of the interleukin 2 receptor γ chain (IL2RG) result in the most common form of severe combined immunodeficiency (SCID), which is characterized by severe and persistent infections starting in early life with an absence of T cells and natural killer cells, normal or elevated B cell counts and hypogammaglobulinemia. SCID is commonly fatal within the first year of life, unless the immune system is reconstituted by hematopoietic stem cell transplantation (HSCT) or gene therapy. We herein describe a male infant with X-linked severe combined immunodeficiency (X-SCID) diagnosed at 5 months of age. Genetic testing revealed a novel C to G missense mutation in exon 1 resulting in a 3' splice site disruption with premature stop codon and aberrant IL2 receptor signaling. Following the diagnosis of X-SCID, the patient subsequently underwent a TCRαß/CD19-depleted haploidentical HSCT. Post transplantation the patient presented with early CD8+ T cell recovery with the majority of T cells (>99%) being non-donor T cells. Genetic analysis of CD4+ and CD8+ T cells revealed a spontaneous 14 nucleotide insertion at the mutation site resulting in a novel splice site and restoring the reading frame although defective IL2RG function was still demonstrated. In conclusion, our findings describe a spontaneous second-site mutation in IL2RG as a novel cause of somatic mosaicism and early T cell recovery following haploidentical HSCT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Mutation , X-Linked Combined Immunodeficiency Diseases , Allografts , Humans , Infant , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Male , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology , X-Linked Combined Immunodeficiency Diseases/therapy
19.
Science ; 372(6543)2021 05 14.
Article in English | MEDLINE | ID: mdl-33986151

ABSTRACT

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell-specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor ß (IL-2Rß) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2's mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


Subject(s)
Cell Cycle Proteins/metabolism , Immunity, Cellular , Oxidative Stress , RNA, Transfer/metabolism , T-Lymphocytes/immunology , Animals , Cell Cycle Proteins/genetics , Cell Proliferation , Female , Gene Deletion , Herpesviridae Infections/immunology , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , Interleukin-2/metabolism , Interleukin-2 Receptor beta Subunit/genetics , Interleukin-2 Receptor beta Subunit/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muromegalovirus , Protein Binding , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Ribonuclease, Pancreatic/genetics , Ribonuclease, Pancreatic/metabolism , Signal Transduction
20.
Sci Rep ; 11(1): 7584, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828203

ABSTRACT

New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients' anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.


Subject(s)
Adenocarcinoma/therapy , Electroporation/methods , Pancreatic Neoplasms/therapy , Adenocarcinoma/pathology , Adenocarcinoma/physiopathology , Animals , CRISPR-Cas Systems , Cell Line, Tumor , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Electric Conductivity , Female , Gene Knockout Techniques , Humans , Immunocompromised Host , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Male , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Proof of Concept Study , Swine , Translational Research, Biomedical , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...