Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 192: 1021-1028, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34666131

ABSTRACT

Interleukin (IL)-11 is a multifunctional cytokine belonging to the IL-6 family, which plays essential roles in immune response. However, much less is known about the immunological functions of IL-11 in teleost. In this study, we investigated the immune properties of a teleost IL-11 homologue (CsIL-11) from tongue sole Cynoglossus semilaevis. CsIL-11 possesses four conserved α-helices and conserved CsIL-11 receptor binding residues L86 and R187, and shares 23.3%-80.1% identities with other IL-11 homologues. CsIL-11 expression was constitutive in tissues, with most abundant in blood and least abundant in spleen, and upregulated by bacterial challenge in blood, spleen, and head kidney. Recombinant CsIL-11 (rCsIL-11) in the native form of monomer, could bind to peripheral blood leukocytes (PBLs) membrane and enhance the activation and phagocytosis of PBLs. When administered in vivo, rCsIL-11 could markedly promote the host to defend against microbial infection. Overall, our findings show that CsIL-11 plays a pivotal role in regulating PBLs phagocytosis and antibacterial immunity.


Subject(s)
Bacterial Infections/veterinary , Fish Diseases/etiology , Fish Diseases/metabolism , Fishes/physiology , Interleukin-11/metabolism , Phagocytosis/immunology , Amino Acid Sequence , Animals , Disease Resistance , Disease Susceptibility , Host-Pathogen Interactions/immunology , Immunity, Innate , Interleukin-11/chemistry , Interleukin-11/genetics , Phylogeny , Structure-Activity Relationship
2.
Front Immunol ; 11: 1424, 2020.
Article in English | MEDLINE | ID: mdl-32765502

ABSTRACT

Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.


Subject(s)
Interleukin-11 , Interleukin-6 , Signal Transduction/immunology , Animals , Humans , Interleukin-11/chemistry , Interleukin-11/immunology , Interleukin-11/metabolism , Interleukin-6/chemistry , Interleukin-6/immunology , Interleukin-6/metabolism , Structure-Activity Relationship
3.
Cell Calcium ; 80: 152-159, 2019 06.
Article in English | MEDLINE | ID: mdl-31103949

ABSTRACT

S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04-10 µM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 µM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium/metabolism , Interleukin-11/chemistry , Neoplasm Proteins/chemistry , Calcium/chemistry , Calcium-Binding Proteins/metabolism , Dimerization , Humans , Interleukin-11/metabolism , Molecular Dynamics Simulation , Neoplasm Proteins/metabolism , Protein Binding , Protein Conformation , Protein Denaturation , Protein Stability , Structure-Activity Relationship , Surface Plasmon Resonance
4.
EMBO Mol Med ; 11(4)2019 04.
Article in English | MEDLINE | ID: mdl-30885958

ABSTRACT

Excessive signaling through gp130, the shared receptor for the interleukin (IL)6 family of cytokines, is a common hallmark in solid malignancies and promotes their progression. Here, we established the in vivo utility of bazedoxifene, a steroid analog clinically approved for the treatment of osteoporosis, to suppress gp130-dependent tumor growth of the gastrointestinal epithelium. Bazedoxifene administration reduced gastric tumor burden in gp130Y757F mice, where tumors arise exclusively through excessive gp130/STAT3 signaling in response to the IL6 family cytokine IL11. Likewise, in mouse models of sporadic colon and intestinal cancers, which arise from oncogenic mutations in the tumor suppressor gene Apc and the associated ß-catenin/canonical WNT pathway, bazedoxifene treatment reduces tumor burden. Consistent with the proposed orthogonal tumor-promoting activity of IL11-dependent gp130/STAT3 signaling, tumors of bazedoxifene-treated Apc-mutant mice retain excessive nuclear accumulation of ß-catenin and aberrant WNT pathway activation. Likewise, bazedoxifene treatment of human colon cancer cells harboring mutant APC did not reduce aberrant canonical WNT signaling, but suppressed IL11-dependent STAT3 signaling. Our findings provide compelling proof of concept to support the repurposing of bazedoxifene for the treatment of gastrointestinal cancers in which IL11 plays a tumor-promoting role.


Subject(s)
Drug Repositioning , Gastrointestinal Neoplasms/drug therapy , Indoles/therapeutic use , Selective Estrogen Receptor Modulators/therapeutic use , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Proliferation/drug effects , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/metabolism , Disease Models, Animal , Female , Gastrointestinal Neoplasms/pathology , Humans , Indoles/metabolism , Indoles/pharmacology , Interleukin-11/chemistry , Interleukin-11/metabolism , Interleukin-11/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT3 Transcription Factor/metabolism , Selective Estrogen Receptor Modulators/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , beta Catenin/metabolism
5.
J Pharm Sci ; 107(11): 2755-2763, 2018 11.
Article in English | MEDLINE | ID: mdl-30005986

ABSTRACT

Treating thrombocytopenia induced by chemotherapy remains an unmet-medical need. The use of recombinant human interleukin-11 (rhIL-11) requires repeated injections and induces significant fluid retention in some patients. Modification of human interleukin-11 with chemically inert polyethylene glycol polymer (PEG) may extend the peripheral circulation half-life leading to an improved pharmacokinetic and pharmadynamic profile. In this study, a number of rhIL-11 PEG conjugates were created to determine the optimal approach to prolong circulating half-life with the most robust pharmacological effect. The lead candidate was found to be a single 40-kDa Y-shaped PEG linked to the N-terminus, which produced a long-lasting circulating half-life, enhanced efficacy and alleviated side effect of dilutional anemia in healthy rat models. This candidate was also shown to be effective in myelosuppressive rats in preventing the occurrence of severe thrombocytopenia while ameliorating dilutional anemia, compared to rats receiving daily administration of unmodified rhIL-11 at the same dose. These data indicated that a single injection of the selected modified rhIL-11 for each cycle of chemotherapy regimen is potentially feasible. This approach may also be useful in treating patients of acute radiation syndrome when frequent administration is not feasible in a widespread event of a major radiation exposure.


Subject(s)
Interleukin-11/pharmacology , Interleukin-11/pharmacokinetics , Polyethylene Glycols/pharmacology , Polyethylene Glycols/pharmacokinetics , Animals , Blood Platelets/drug effects , Humans , Interleukin-11/chemistry , Male , Models, Molecular , Platelet Count , Polyethylene Glycols/chemistry , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Thrombocytopenia/drug therapy , Thrombopoiesis/drug effects
6.
Health Phys ; 115(1): 65-76, 2018 07.
Article in English | MEDLINE | ID: mdl-29787432

ABSTRACT

Interleukin-11 was developed to reduce chemotherapy-induced thrombocytopenia; however, its clinical use was limited by severe adverse effects in humans. PEGylated interleukin-11 (BBT-059), developed by Bolder Biotechnology, Inc., exhibited a longer half-life in rodents and induced longer-lasting increases in hematopoietic cells than interleukin-11. A single dose of 1.2 mg kg of BBT-059, administered subcutaneously to CD2F1 mice (12-14 wk, male) was found to be safe in a 14 d toxicity study. The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to Co gamma total-body irradiation. A single dose of 0.3 mg kg, administered either 24 h pre-, 4 h post-, or 24 h postirradiation increased the survival of mice to 70-100% from lethal doses of radiation. Preadministration (-24 h) of the drug conferred a significantly (p < 0.05) higher survival compared to 24 h post-total-body irradiation. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pretreated with BBT-059. The drug also increased bone marrow cellularity and megakaryocytes and accelerated multilineage hematopoietic recovery. In addition, BBT-059 inhibited the induction of radiation-induced hematopoietic biomarkers, thrombopoietin, erythropoietin, and Flt-3 ligand. These results indicate that BBT-059 is a promising radiation countermeasure, demonstrating its potential to be used both pre- and postirradiation for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Subject(s)
Acute Radiation Syndrome/drug therapy , Hematopoietic System/drug effects , Interleukin-11/administration & dosage , Polyethylene Glycols/chemistry , Radiation Injuries, Experimental/drug therapy , Whole-Body Irradiation/adverse effects , Acute Radiation Syndrome/etiology , Animals , Dose-Response Relationship, Radiation , Hematopoietic System/pathology , Hematopoietic System/radiation effects , Interleukin-11/chemistry , Male , Mice , Radiation Injuries, Experimental/etiology
7.
Toxicol Appl Pharmacol ; 342: 39-49, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29407773

ABSTRACT

The mono-PEGylated recombinant human interleukin-11 (rhIL-11) was evaluated for its pharmacology and toxicology profile in non-human primates. This PEGylated IL-11 (PEG-IL11) showed a much prolonged circulating half-life of 67h in cynomolgus monkeys as compared to its un-PEGylated counterpart (~3h) through subcutaneous administration, implicating that a single injection of the recommended dose will effectively enhance thrombopoiesis in humans for a much longer period of time compared to rhIL-11 in humans (t1/2=6.9h). The toxicokinetics study of single dose and multiple doses showed that systemic exposure was positively correlated with the dosing level, implying that efficacy and toxicity were mechanism-based. A single high dose at 6.25mg/kg through subcutaneous route revealed tolerable and transient toxicity. Multiple-dose in monkeys receiving 0.3mg/kg weekly of the drug developed only mild to moderate toxicity. Major adverse events and immunogenicity in monkeys were only observed in the overdose groups. Bones were positively impacted; while reversible toxicities in heart, liver, kidney and lung observed were likely to be consequences of fluid retention. In summary, the PEG moiety on rhIL-11 did not elicit additional toxicities, and the drug under investigation was found to be well tolerated in monkeys after receiving a single effective dose of 0.1-0.3mg/kg through subcutaneous delivery, which may be allometrically scaled to a future clinical dose at 30-100µg/kg, creating a potential long acting, safer, and more convenient treatment approach based on rhIL-11.


Subject(s)
Interleukin-11/administration & dosage , Polyethylene Glycols/administration & dosage , Animals , Bone Density/drug effects , Bone Density/physiology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Humans , Injections, Subcutaneous , Interleukin-11/chemistry , Interleukin-11/toxicity , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Macaca fascicularis , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/toxicity
8.
Protein Expr Purif ; 146: 69-77, 2018 06.
Article in English | MEDLINE | ID: mdl-29408294

ABSTRACT

Current source of recombinant human interleukin-11 (rhIL-11) is isolated from a fusion protein expressed by E. coli that requires additional enterokinase to remove linked protein, resulting in product heterogeneity of N-terminal sequence. Due to lack of glycosylation, rhIL-11 is suitable to be expressed by yeast cells. However, the only available yeast-derived rhIL-11 presents an obstacle in low production yield, as well as an unamiable process, such as the use of reverse-phase chromatography employing plenty of toxic organic solvents. Our findings showed that the low yield was due to self-aggregation of rhIL-11. A novel process recovering bioactive rhIL-11 from the yeast secretory medium therefore has been developed and demonstrated, involving fermentation from Pichia pastoris, followed by a two-phase extraction to precipitate rhIL-11. After renaturing, the protein of interest was purified by a two-column step, comprising a cation-exchanger, and a hydrophobic interaction chromatography in tandem at high sample loads that was facile and cost-effective in future scale-up. Identity and quality assessments confirmed the expected amino acid sequence without N-terminal heterogeneity, as well as high quality in potency and purity. Such a process provides an alternative and adequate supply of the starting material for the PEGylated rhIL-11.


Subject(s)
Interleukin-11/genetics , Pichia/genetics , Cell Line , Cell Proliferation , Chromatography, Gel , Cloning, Molecular/methods , Fermentation , Gene Expression , Humans , Interleukin-11/chemistry , Interleukin-11/isolation & purification , Interleukin-11/metabolism , Pichia/metabolism , Protein Aggregates , Protein Refolding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solubility
9.
Biochim Biophys Acta Mol Cell Res ; 1865(3): 496-506, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29237553

ABSTRACT

Height is a complex human phenotype that is influenced by variations in a high number of genes. Recently, a single nucleotide polymorphism (SNP) within IL11 (rs4252548) has been described to be associated with height in adults of European ancestry. This coding SNP leads to the exchange of Arg-112 to His-112 within the cytokine Interleukin-11 (IL-11), which has a well-established role in osteoclast development and bone turnover. The functional consequences of the R112H mutation are unknown so far. In this study, we show by molecular replacement that Arg-112 does not participate in binding of IL-11 to its receptors IL-11R and glycoprotein 130 (gp130). Recombinant IL-11 R112H expressed in E. coli displays a correct four-helix-bundle folding topology, and binds with similar affinity to IL-11R and the IL-11/IL-11R/gp130 complex. IL-11 R112H induces cell proliferation and phosphorylation of the downstream transcription factor STAT3 indistinguishable from IL-11. However, IL-11 R112H fails to support the survival of osteoclast progenitor cells and is less thermally stable, which is caused by the loss of the positive charge on the protein surface since protonation of the histidine side chain recovers stability.


Subject(s)
Body Height/genetics , Cytokine Receptor gp130/genetics , Interleukin-11/genetics , Receptors, Interleukin-11/genetics , Arginine/chemistry , Arginine/genetics , Cell Line , Cell Proliferation/genetics , Cytokine Receptor gp130/chemistry , Gene Expression Regulation , Genetic Association Studies , Humans , Interleukin-11/chemistry , Polymorphism, Single Nucleotide , Receptors, Interleukin-11/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , STAT3 Transcription Factor/chemistry , STAT3 Transcription Factor/genetics
10.
J Biomol Struct Dyn ; 35(1): 78-91, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26726132

ABSTRACT

Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 µM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.


Subject(s)
Carrier Proteins/chemistry , Conserved Sequence , EF Hand Motifs , Interleukin-11/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Animals , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Humans , Interleukin-11/metabolism , Metals/chemistry , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Protein Binding , Protein Domains
11.
Cytokine Growth Factor Rev ; 32: 41-61, 2016 12.
Article in English | MEDLINE | ID: mdl-27312790

ABSTRACT

Human Interleukin (IL)-11 is a multifunctional cytokine, recognized for its thrombopoietic effects for more than two decades; clinically, IL-11 is used in the treatment of thrombocytopenia. IL-11 shares structural and functional similarities with IL-6, a related family member. In recent years, there has been a renewed interest in IL-11, because its distinct biological activities associated with cancers of epithelial origin and inflammatory disorders have been revealed. Although the crystal structure of IL-11 was resolved more than two years, a better understanding of the mechanisms of IL-11 action is required to further extend the clinical use of IL-11. This review will discuss the available structural, functional, and bioinformatics knowledge concerning IL-11 and will summarize its relationship with several diseases.


Subject(s)
Interleukin-11 , Animals , Computer Simulation , Humans , Interleukin-11/antagonists & inhibitors , Interleukin-11/chemistry , Interleukin-11/immunology , Interleukin-11/metabolism , Molecular Structure , Signal Transduction
12.
Cell Biochem Biophys ; 74(3): 285-96, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27334537

ABSTRACT

Cytokine interleukin-11 (IL-11) is a multifunctional protein with diverse roles in the normal cell signaling and in various pathologies. The structure of IL-11 is characterized by a four-helix bundle motif comprising two pairs of antiparallel α-helices arranged in an up-up-down-down configuration. Evaluation of the intrinsic disorder predisposition of human IL-11 by several computational tools clearly shows that this protein is predicted to have functional disordered regions potentially involved in interaction with natural binding partners. Signaling by IL-11 proceeds via an interaction of the protein with its membrane-specific receptor IL-11Rα and a subsequent interaction of the complex with the transmembrane signal-transducing receptor GP130. Cytoplasmic domain of IL-11Rα is predicted to be very disordered, and noticeable amount of disorder is present even in the large extracellular domain of the protein. GP130 is also predicted to have long disordered region that is located at the C-terminal of the protein and is expected to have several disorder-based binding sites. It shows that intrinsic disorder might play an important role in functioning of this signaling machine. A specific subset of the calcium sensor proteins (calmodulin, S100P, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants in a range of 1-19 µM, and the structural features of their hinge regions likely ensure selectivity and calcium sensitivity of IL-11 binding to the EF-hand proteins studied. IL-11 exhibits multiple effects on hematopoietic and non-hematopoietic systems. It plays a major role in orchestrating complex processes of tumor development and progression.


Subject(s)
Interleukin-11/chemistry , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/metabolism , Humans , Interleukin-11/metabolism , Protein Binding , Protein Structure, Tertiary
13.
Biochem Biophys Res Commun ; 468(4): 733-8, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26551460

ABSTRACT

Interleukin-11 (IL-11) and S100P are oncoproteins co-expressed in numerous cancers, which might favor their interaction during oncogenesis. We have explored the possibility of this interaction by surface plasmon resonance spectroscopy, intrinsic fluorescence, and chemical crosslinking. Recombinant forms of IL-11 and S100P interact with each other under physiological level of calcium ions. IL-11 molecule has at least two S100P-binding sites with dissociation constants of 32 nM and 288 nM, which is 5-13-fold lower than its affinity to extracellular domain of IL-11 receptor subunit α. S100P does not alter IL-11-induced STAT3 activation in HEK293 cells co-expressing IL-11 receptors, but could affect other tumorigenic signaling pathways. The highly specific IL-11 - S100P interaction occurring under physiologically relevant conditions should be taken into consideration upon development of the antineoplastics inhibiting IL-11 signaling.


Subject(s)
Calcium/chemistry , Calcium/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Interleukin-11/chemistry , Interleukin-11/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Binding Sites , HEK293 Cells , Humans , Kinetics , Protein Binding
14.
J Cell Biochem ; 116(9): 2098-108, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25808168

ABSTRACT

In tumor cells, two factors are abnormally increased that contribute to metastatic bone disease: Runx2, a transcription factor that promotes expression of metastasis related and osteolytic genes; and IL-11, a secreted osteolytic cytokine. Here, we addressed a compelling question: Does Runx2 regulate IL-11 gene expression? We find a positive correlation between Runx2, IL-11 and TGFß1, a driver of the vicious cycle of metastatic bone disease, in prostate cancer (PC) cell lines representing early (LNCaP) and late (PC3) stage disease. Further, like Runx2 knockdown, IL-11 knockdown significantly reduced expression of several osteolytic factors. Modulation of Runx2 expression results in corresponding changes in IL-11 expression. The IL-11 gene has Runx2, AP-1 sites and Smad binding elements located on the IL-11 promoter. Here, we demonstrated that Runx2-c-Jun as well as Runx2-Smad complexes upregulate IL-11 expression. Functional studies identified a significant loss of IL-11 expression in PC3 cells in the presence of the Runx2-HTY mutant protein, a mutation that disrupts Runx2-Smad signaling. In response to TGFß1 and in the presence of Runx2, we observed a 30-fold induction of IL-11 expression, accompanied by increased c-Jun binding to the IL-11 promoter. Immunoprecipitation and in situ co-localization studies demonstrated that Runx2 and c-Jun form nuclear complexes in PC3 cells. Thus, TGFß1 signaling induces two independent transcriptional pathways - AP-1 and Runx2. These transcriptional activators converge on IL-11 as a result of Runx2-Smad and Runx2-c-Jun interactions to amplify IL-11 gene expression that, together with Runx2, supports the osteolytic pathology of cancer induced bone disease.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/secondary , Core Binding Factor Alpha 1 Subunit/metabolism , Interleukin-11/genetics , Prostatic Neoplasms/genetics , Transforming Growth Factor beta1/pharmacology , Binding Sites , Bone Neoplasms/metabolism , Cell Line, Tumor , Core Binding Factor Alpha 1 Subunit/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Interleukin-11/chemistry , Interleukin-11/metabolism , Male , Multiprotein Complexes/metabolism , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Smad Proteins/metabolism , Up-Regulation
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2277-85, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25195742

ABSTRACT

Interleukin (IL)-11 is a multifunctional member of the IL-6 family of cytokines. Recombinant human IL-11 is administered as a standard clinical treatment for chemotherapy-induced thrombocytopaenia. Recently, a new role for IL-11 signalling as a potent driver of gastrointestinal cancers has been identified, and it has been demonstrated to be a novel therapeutic target for these diseases. Here, the crystal structure of human IL-11 is reported and the structural resolution of residues previously identified as important for IL-11 activity is presented. While IL-11 is thought to signal via a complex analogous to that of IL-6, comparisons show important differences between the two cytokines and it is suggested that IL-11 engages GP130 differently to IL-6. In addition to providing a structural platform for further study of IL-11, these data offer insight into the binding interactions of IL-11 with each of its receptors and the structural mechanisms underlying agonist and antagonist variants of the protein.


Subject(s)
Interleukin-11/chemistry , Interleukin-6/chemistry , Receptors, Interleukin-11/metabolism , Crystallography, X-Ray , Humans , Interleukin-11/metabolism , Models, Molecular , Protein Conformation , Ultracentrifugation
16.
Health Phys ; 106(1): 7-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24276546

ABSTRACT

Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.


Subject(s)
Acute Radiation Syndrome/drug therapy , Disease Models, Animal , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Interleukin-11/pharmacology , Polyethylene Glycols/chemistry , Acute Radiation Syndrome/physiopathology , Animals , Female , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/chemistry , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Hematopoiesis/radiation effects , Humans , Interleukin-11/administration & dosage , Interleukin-11/chemistry , Interleukin-11/therapeutic use , Male , Mice , Mice, Inbred C57BL , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use , Survival Analysis , Young Adult
17.
BMC Biotechnol ; 12: 8, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22433466

ABSTRACT

BACKGROUND: Interleukin 11 (IL-11) is a pleiotropic cytokine with anti-apoptotic, anti-inflammatory and hematopoietic potential. The IL-11 activity is determined by the expression of the IL-11R receptor alpha (IL-11Rα) and the signal transducing subunit ß (gp130) on the cell membrane. A recombinant soluble form of the IL-11Rα (sIL-11Rα) in combination with IL-11 acts as an agonist on cells expressing the gp130 molecule. We constructed a designer cytokine Hyper IL-11 (H11), which is exclusively composed of naturally existing components. It contains the full length sIL-11Rα connected with the mature IL-11 protein using their natural sequences only. Such a construct has two major advantages: (i) its components are as close as possible to the natural forms of both proteins and (ii) it lacks an artificial linker what should avoid induction of antibody production. RESULTS: The H11 construct was generated, the protein was produced in a baculovirus expression system and was then purified by using ion exchange chromatography. The H11 protein displayed activity in three independent bioassays, (i) it induced acute phase proteins production in HepG2 cells expressing IL-11, IL-11Rα and gp130, (ii) it stimulated the proliferation of B9 cells (cells expressing IL-11Rα and gp130) and (iii) proliferation of Baf/3-gp130 cells (cells not expressing IL-11 and IL-11Rα but gp130). Moreover, the preliminary data indicated that H11 was functionally distinct from Hyper-IL-6, a molecule which utilizes the same homodimer of signal transducing receptor (gp130). CONCLUSIONS: The biologically active H11 may be potentially useful for treatment of thrombocytopenia, infertility, multiple sclerosis, cardiovascular diseases or inflammatory disorders.


Subject(s)
Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Cloning, Molecular , Cytokine Receptor gp130/metabolism , Flow Cytometry , Hep G2 Cells , Humans , Interleukin-11/chemistry , Interleukin-11/genetics , Interleukin-11 Receptor alpha Subunit/chemistry , Interleukin-11 Receptor alpha Subunit/genetics , Interleukin-6/metabolism , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
18.
Biochem Biophys Res Commun ; 405(3): 399-404, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21238428

ABSTRACT

Recombinant human interleukin-11 (rhIL-11) has been shown to increase platelet counts in animals and humans and is the only drug approved for its use in chemotherapy-induced thrombocytopenia (CIT). However, due to its serious side effects, its clinical use has been limited. The current work presents significantly improved efficacy of rhIL-11 via knowledge based re-designing process. The interleukin-11 mutein (mIL-11) was found to endure chemical and proteolytic stresses, while retaining the biological activity of rhIL-11. The improved efficacy of mIL-11 was evident after subcutaneous administration of mIL-11 and rhIL-11 in the rodent and primate models. More than three-fold increase in maximum plasma concentration (Cmax) and area-under-the curve (AUC) was observed. Furthermore, three-fold higher increase in the platelet counts was obtained after seven consecutive daily subcutaneous mIL-11 injections than that with rhIL-11. The mIL-11 demonstrated not only improved stability but also enhanced efficacy over the currently used rhIL-11 regimen, thereby suggesting less toxicity.


Subject(s)
Interleukin-11/chemistry , Interleukin-11/pharmacokinetics , Amino Acid Sequence , Animals , Haplorhini , Humans , Interleukin-11/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Stability , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics
19.
J Biol Chem ; 286(10): 8085-8093, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21138838

ABSTRACT

Human interleukin-11 (hIL-11) is a pleiotropic cytokine administered to patients with low platelet counts. From a structural point of view hIL-11 belongs to the long-helix cytokine superfamily, which is characterized by a conserved core motif consisting of four α-helices. We have investigated the region of hIL-11 that does not belong to the α-helical bundle motif, and that for the purpose of brevity we have termed "non-core region." The primary sequence of the interleukin was altered at various locations within the non-core region by introducing glycosylation sites. Functional consequences of these modifications were examined in cell-based as well as biophysical assays. Overall, the data indicated that the non-core region modulates the function of hIL-11 in two ways. First, the majority of muteins displayed enhanced cell-stimulatory properties (superagonist behavior) in a glycosylation-dependent manner, suggesting that the non-core region is biologically designed to limit the full potential of hIL-11. Second, specific modification of a predicted mini α-helix led to cytokine inactivation, demonstrating that this putative structural element belongs to site III engaging a second copy of cell-receptor gp130. These findings have unveiled new and unexpected elements modulating the biological activity of hIL-11, which may be exploited to develop more versatile medications based on this important cytokine.


Subject(s)
Interleukin-11/metabolism , Protein Modification, Translational/physiology , Signal Transduction/physiology , Amino Acid Motifs , Animals , Cell Line, Tumor , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Glycosylation , Humans , Interleukin-11/agonists , Interleukin-11/antagonists & inhibitors , Interleukin-11/chemistry , Interleukin-11/genetics , Mice , Structure-Activity Relationship
20.
Mol Immunol ; 45(12): 3494-501, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18538848

ABSTRACT

Interleukin 11 is a class-1 helical cytokine, having the four-helix bundle structure, possessing pleiotropic characteristics involved in physiological processes including blood production, bone formation and placentation. The interleukin 11 paralogues (IL11a and IL11b) have been identified in fish with only IL11a from carp and trout have been characterized and analyzed for its expression thus far. Here, we cloned and studied the structure and expression of IL11b in Japanese flounder (Paralichthys olivaceus), and compared this with the existing information on fish IL11 paralogues. Japanese flounder IL11b (poIL11b) cDNA is composed of 1536 bp encoding for 201 aa residues with a 23 aa leader peptide, three cysteine residues (C12, C183 and C198) and four potential N-linked glycosylation sites. poIL11b does not show constitutive expression in tissues of adult fish except for the very slight expression in kidney and spleen, and the very high expression in peripheral blood leukocytes (PBLs). poIL11b is transiently up-regulated by bacterial lipopolysaccharide (LPS) and increasingly stimulated by the IFN inducer poly I:C in kidney, spleen and peripheral blood leukocytes of adult fish in vitro. It is likewise slightly stimulated by Edwardsiella tarda infection but is highly expressed after hirame rhabdovirus (HIRRV) infection in kidney of juvenile fish. The stimulation studies suggest that poIL11b, aside from its role in bacterial infection, is well involved in antiviral responses. Moreover, poIL11b structure and expression pattern appears to be slightly distinct and opposite to IL11a, respectively, suggesting a complementation of function of the duplicate fish IL11 genes.


Subject(s)
Edwardsiella tarda/immunology , Flounder/immunology , Flounder/microbiology , Interleukin-11/immunology , Novirhabdovirus/immunology , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Edwardsiella tarda/drug effects , Gene Expression Profiling , Gene Expression Regulation/drug effects , Interleukin-11/chemistry , Interleukin-11/genetics , Lipopolysaccharides/pharmacology , Molecular Sequence Data , Novirhabdovirus/drug effects , Phylogeny , Poly I-C/pharmacology , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...