Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.679
Filter
1.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732587

ABSTRACT

Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 µg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.


Subject(s)
Interleukin-12 , Killer Cells, Natural , Probiotics , Humans , Double-Blind Method , Killer Cells, Natural/immunology , Male , Female , Adult , Probiotics/administration & dosage , Middle Aged , Hot Temperature , Young Adult , Immunoglobulin A/blood , Lactobacillus plantarum , Immunity, Innate , Immune System
2.
Pharmacol Res ; 203: 107186, 2024 May.
Article in English | MEDLINE | ID: mdl-38641176

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cell therapy has achieved remarkable efficacy in treating hematological malignancies, but it confronts many challenges in treating solid tumors, such as the immunosuppressive microenvironment of the solid tumors. These factors reduce the antitumor activity of CAR-T cells in clinical trials. Therefore, we used the immunocytokine interleukin-12 (IL-12) to enhance the efficacy of CAR-T cell therapy. In this study, we engineered CAR-IL12R54 T cells that targeted mesothelin (MSLN) and secreted a single-chain IL-12 fused to a scFv fragment R54 that recognized a different epitope on mesothelin. The evaluation of the anti-tumor activity of the CAR-IL12R54 T cells alone or in combination with anti-PD-1 antibody in vitro and in vivo was followed by the exploration of the functional mechanism by which the immunocytokine IL-12 enhanced the antitumor activity. CAR-IL12R54 T cells had potency to lyse mesothelin positive tumor cells in vitro. In vivo studies demonstrated that CAR-IL12R54 T cells were effective in controlling the growth of established tumors in a xenograft mouse model with fewer side effects than CAR-T cells that secreted naked IL-12. Furthermore, combination of PD-1 blockade antibody with CAR-IL12R54 T cells elicited durable anti-tumor responses. Mechanistic studies showed that IL12R54 enhanced Interferon-γ (IFN-γ) production and dampened the activity of regulatory T cells (Tregs). IL12R54 also upregulated CXCR6 expression in the T cells through the NF-κB pathway, which facilitated T cell infiltration and persistence in the tumor tissues. In summary, the studies provide a good therapeutic option for the clinical treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive , Interleukin-12 , Mesothelin , Receptors, Chimeric Antigen , Animals , Interleukin-12/immunology , Interleukin-12/genetics , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Cell Line, Tumor , Mice , Xenograft Model Antitumor Assays , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/antagonists & inhibitors , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Receptors, Interleukin-12/genetics , Receptors, Interleukin-12/immunology , T-Lymphocytes/immunology
3.
Curr Microbiol ; 81(5): 127, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575759

ABSTRACT

An urgent need is to introduce an effective vaccine against Mycobacterium tuberculosis (M.tb) infection. In the present study, a multi-stage M.tb immunodominant Fcγ1 fusion protein (Ag85B:HspX:hFcγ1) was designed and produced, and the immunogenicity of purified protein was evaluated. This recombinant fusion protein was produced in the Pichia pastoris expression system. The HiTrap-rPA column affinity chromatography purified and confirmed the fusion protein using ELISA and Western blotting methods. The co-localisation assay was used to confirm its proper folding and function. IFN-γ, IL-12, IL-4, and TGF-ß expression in C57BL/6 mice then evaluated the immunogenicity of the construct in the presence and absence of BCG. After expression optimisation, medium-scale production and the Western blotting test confirmed suitable production of Ag85B:HspX:hFcγ1. The co-localisation results on antigen-presenting cells (APCs) showed that Ag85B:HspX:hFcγ1 properly folded and bound to hFcγRI. This strong co-localisation with its receptor can confirm inducing proper Th1 responses. The in vivo immunisation assay showed no difference in the expression of IL-4 but a substantial increase in the expression of IFN-γ and IL-12 (P ≤ 0.02) and a moderate increase in TGF-ß (P = 0.05). In vivo immunisation assay revealed that Th1-inducing pathways have been stimulated, as IFN-γ and IL-12 strongly, and TGF-ß expression moderately increased in Ag85B:HspX:hFcγ1 group and Ag85B:HspX:hFcγ1+BCG. Furthermore, the production of IFN-γ from splenocytes in the Ag85B:HspX:hFcγ1 group was enormously higher than in other treatments. Therefore, this Fc fusion protein can make a selective multi-stage delivery system for inducing appropriate Th1 responses and is used as a subunit vaccine alone or in combination with others.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Mice , Animals , Mycobacterium tuberculosis/genetics , Bacterial Proteins/genetics , Antigens, Bacterial/genetics , BCG Vaccine , Interleukin-4 , Mice, Inbred C57BL , Recombinant Proteins/genetics , Interleukin-12 , Transforming Growth Factor beta , Tuberculosis Vaccines/genetics , Acyltransferases/genetics
4.
Front Immunol ; 15: 1360063, 2024.
Article in English | MEDLINE | ID: mdl-38558809

ABSTRACT

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Riboswitch , Mice , Humans , Animals , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Genetic Therapy , Interleukin-12/genetics , Interleukin-12/metabolism , Tetracycline/pharmacology
5.
Sci Rep ; 14(1): 7683, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561502

ABSTRACT

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Helicobacter , Stomach Neoplasms , Humans , Cytokines/metabolism , Helicobacter pylori/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Helicobacter/metabolism , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Gastritis/pathology , Interleukin-12/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Helicobacter Infections/genetics , Helicobacter Infections/metabolism , Gastric Mucosa/metabolism
6.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598335

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Subject(s)
Interleukin-12 , Probiotics , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Probiotics/pharmacology , Mice , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Mice, Inbred C57BL , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Escherichia coli/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology
7.
Front Immunol ; 15: 1355315, 2024.
Article in English | MEDLINE | ID: mdl-38558807

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Subject(s)
Macrophage Activation Syndrome , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, IgG/genetics , Macrophage Activation Syndrome/genetics , Phagocytosis/genetics , Interleukin-12
8.
Immunohorizons ; 8(4): 355-362, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687282

ABSTRACT

To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.


Subject(s)
Interleukin-12 , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells , T-Box Domain Proteins , Toxoplasma , Toxoplasmosis , Animals , Toxoplasma/immunology , Mice , Interleukin-12/metabolism , Interleukin-12/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Immunity, Innate , Toxoplasmosis, Animal/immunology , Disease Resistance/immunology , Female
9.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Article in English | MEDLINE | ID: mdl-38525008

ABSTRACT

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Subject(s)
HMGB1 Protein , Melanoma , Humans , Mice , Animals , Interleukin-12 , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/metabolism , HMGB1 Protein/metabolism , Immunogenic Cell Death , Mice, Inbred C57BL , Cell Proliferation , CD4-Positive T-Lymphocytes , Adenosine Triphosphate/metabolism
10.
Cell Biochem Funct ; 42(2): e3981, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509733

ABSTRACT

Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-ß, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-ß]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-ß and decreased levels of IL-12, IL1-ß, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.


Subject(s)
Lacticaseibacillus rhamnosus , Lactobacillus delbrueckii , Lupus Erythematosus, Systemic , Probiotics , Humans , Monocytes/metabolism , Monocytes/pathology , Interleukin-10 , Lactobacillus delbrueckii/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Lupus Erythematosus, Systemic/drug therapy , Interleukin-12/metabolism , Interleukin-12/pharmacology , Interleukin-12/therapeutic use , Transforming Growth Factor beta/metabolism , Probiotics/pharmacology
11.
N Engl J Med ; 390(12): 1105-1117, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38507753

ABSTRACT

BACKGROUND: Autoantibodies against interleukin-12 (anti-interleukin-12) are often identified in patients with thymoma, but opportunistic infections develop in only some of these patients. Interleukin-12 (with subunits p40 and p35) shares a common subunit with interleukin-23 (subunits p40 and p19). In a patient with disseminated Burkholderia gladioli infection, the identification of both anti-interleukin-23 and anti-interleukin-12 prompted further investigation. METHODS: Among the patients (most of whom had thymoma) who were known to have anti-interleukin-12, we screened for autoantibodies against interleukin-23 (anti-interleukin-23). To validate the potential role of anti-interleukin-23 with respect to opportunistic infection, we tested a second cohort of patients with thymoma as well as patients without either thymoma or known anti-interleukin-12 who had unusual infections. RESULTS: Among 30 patients with anti-interleukin-12 who had severe mycobacterial, bacterial, or fungal infections, 15 (50%) also had autoantibodies that neutralized interleukin-23. The potency of such neutralization was correlated with the severity of these infections. The neutralizing activity of anti-interleukin-12 alone was not associated with infection. In the validation cohort of 91 patients with thymoma, the presence of anti-interleukin-23 was associated with infection status in 74 patients (81%). Overall, neutralizing anti-interleukin-23 was detected in 30 of 116 patients (26%) with thymoma and in 30 of 36 patients (83%) with disseminated, cerebral, or pulmonary infections. Anti-interleukin-23 was present in 6 of 32 patients (19%) with severe intracellular infections and in 2 of 16 patients (12%) with unusual intracranial infections, including Cladophialophora bantiana and Mycobacterium avium complex. CONCLUSIONS: Among patients with a variety of mycobacterial, bacterial, or fungal infections, the presence of neutralizing anti-interleukin-23 was associated with severe, persistent opportunistic infections. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
Autoantibodies , Immunologic Deficiency Syndromes , Interleukin-23 , Opportunistic Infections , Adult , Humans , Autoantibodies/immunology , Immunologic Deficiency Syndromes/immunology , Interleukin-12/antagonists & inhibitors , Interleukin-12/immunology , Interleukin-23/antagonists & inhibitors , Interleukin-23/immunology , Mycoses/immunology , Opportunistic Infections/immunology , Thymoma/immunology , Thymus Neoplasms/immunology , Antibodies, Neutralizing/immunology , Bacterial Infections/immunology
12.
Biomed Pharmacother ; 173: 115790, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431436

ABSTRACT

BACKGROUND: Although PD-1 blockade is effective for treating several types of cancer, the efficacy of this agent in glioblastoma is largely limited. To overcome non-responders and the immunosuppressive tumor microenvironment, combinational immunotherapeutic strategies with anti-PD-1 need to be considered. Here, we developed IL-12-secreting mesenchymal stem cells (MSC_IL-12) with glioblastoma tropism and evaluated the therapeutic effects of anti-PD-1, MSC_IL-12, and their combination against glioblastoma. METHODS: Therapeutic responses were evaluated using an immunocompetent mouse orthotopic model. Tumor-infiltrating lymphocytes (TILs) were analyzed using immunofluorescent imaging. Single-cell transcriptome was obtained from mouse brains after treatments. RESULTS: Anti-PD-1 and MSC_IL-12 showed complete tumor remission in 25.0% (4/16) and 23.1% (3/13) of glioblastoma-implanted mice, respectively, and their combination yielded synergistic antitumor efficacy indicated by 50.0% (6/12) of complete tumor remission. Analyses of TILs revealed that anti-PD-1 increased CD8+ T cells, while MSC_IL-12 led to infiltration of CD4+ T cells and NK cells. Both therapies reduced frequencies of Tregs. All these aspects observed in each monotherapy group were superimposed in the combination group. Notably, no tumor growth was observed upon rechallenge in cured mice, indicating long-term immunity against glioblastoma provoked by the therapies. Single-cell RNA-seq data confirmed these results and revealed that the combined treatment led to immune-favorable tumor microenvironment-CD4+, CD8+ T cells, effector memory T cells, and activated microglia were increased, whereas exhausted T cells, Tregs, and M2 polarized microglia were reduced. CONCLUSION: Anti-PD-1 and MSC_IL-12 monotherapies show long-term therapeutic responses, and their combination further enhances antitumor efficacy against glioblastoma via inducing immune-favorable tumor microenvironment.


Subject(s)
Glioblastoma , Mesenchymal Stem Cells , Animals , Mice , Glioblastoma/pathology , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Immunotherapy/methods , Interleukin-12 , Cell Line, Tumor , Disease Models, Animal , Mesenchymal Stem Cells/pathology , Tumor Microenvironment
13.
J Immunother Cancer ; 12(3)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527762

ABSTRACT

BACKGROUND: The varicella-zoster virus (VZV), belonging to the group of human α-herpesviruses, has yet to be developed as a platform for oncolytic virotherapy, despite indications from clinical case reports suggesting a potential association between VZV infection and cancer remission. METHODS: Here, we constructed oncolytic VZV candidates based on the vaccine strain vOka and the laboratory strain Ellen. These newly engineered viruses were subsequently assessed for their oncolytic properties in the human MeWo melanoma xenograft model and the mouse B16-F10-nectin1 melanoma syngeneic model. RESULTS: In the MeWo xenograft model, both vOka and Ellen exhibited potent antitumor efficacy. However, it was observed that introducing a hyperfusogenic mutation into glycoprotein B led to a reduction in VZV's effectiveness. Notably, the deletion of ORF8 (encodes viral deoxyuridine triphosphatase) attenuated the replication of VZV both in vitro and in vivo, but it did not compromise VZV's oncolytic potency. We further armed the VZV Ellen-ΔORF8 vector with a tet-off controlled mouse single-chain IL12 (scIL12) gene cassette. This augmented virus was validated for its oncolytic activity and triggered systemic antitumor immune responses in the immunocompetent B16-F10-nectin1 model. CONCLUSIONS: These findings highlight the potential of using Ellen-ΔORF8-tet-off-scIL12 as a novel VZV-based oncolytic virotherapy.


Subject(s)
Herpesvirus 3, Human , Melanoma, Experimental , Humans , Animals , Mice , Herpesvirus 3, Human/genetics , Interleukin-12
14.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542122

ABSTRACT

Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.


Subject(s)
Gene Transfer Techniques , Interleukin-12 , Humans , Animals , Mice , Swine , Interleukin-12/genetics , Interleukin-12/metabolism , Transfection , Genetic Therapy/methods , DNA/metabolism , Plasmids/genetics , Vaccination , Electroporation/methods
15.
Sci Rep ; 14(1): 7366, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548896

ABSTRACT

Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.


Subject(s)
Liposomes , Nanoparticles , Neoplasms , Mice , Animals , Interleukin-12/genetics , Adaptive Immunity , Immunotherapy , Administration, Intravenous , Tumor Microenvironment , Cell Line, Tumor
16.
Front Immunol ; 15: 1326502, 2024.
Article in English | MEDLINE | ID: mdl-38495878

ABSTRACT

Background: Psoriasis is a highly heterogeneous autoinflammatory disease. At present, heterogeneity in disease has not been adequately translated into concrete treatment options. Our aim was to develop and verify a new stratification scheme that identifies the heterogeneity of psoriasis by the integration of large-scale transcriptomic profiles, thereby identifying patient subtypes and providing personalized treatment options whenever possible. Methods: We performed functional enrichment and network analysis of upregulated differentially expressed genes using microarray datasets of lesional and non-lesional skin samples from 250 psoriatic patients. Unsupervised clustering methods were used to identify the skin subtypes. Finally, an Xgboost classifier was utilized to predict the effects of methotrexate and commonly prescribed biologics on skin subtypes. Results: Based on the 163 upregulated differentially expressed genes, psoriasis patients were categorized into three subtypes (subtypes A-C). Immune cells and proinflammatory-related pathways were markedly activated in subtype A, named immune activation. Contrastingly, subtype C, named stroma proliferation, was enriched in integrated stroma cells and tissue proliferation-related signaling pathways. Subtype B was modestly activated in all the signaling pathways. Notably, subtypes A and B presented good responses to methotrexate and interleukin-12/23 inhibitors (ustekinumab) but inadequate responses to tumor necrosis factor-α inhibitors and interleukin-17A receptor inhibitors. Contrastly, subtype C exhibited excellent responses to tumor necrosis factor-α inhibitors (etanercept) and interleukin-17A receptor inhibitors (brodalumab) but not methotrexate and interleukin-12/23 inhibitors. Conclusions: Psoriasis patients can be assorted into three subtypes with different molecular and cellular characteristics based on the heterogeneity of the skin's immune cells and the stroma, determining the clinical responses of conventional therapies.


Subject(s)
Interleukin-17 , Psoriasis , Humans , Interleukin-17/metabolism , Methotrexate/therapeutic use , Tumor Necrosis Factor-alpha/genetics , Psoriasis/pathology , Immunologic Factors/therapeutic use , Transcriptome , Interleukin-12/genetics
17.
Front Immunol ; 15: 1362775, 2024.
Article in English | MEDLINE | ID: mdl-38487528

ABSTRACT

Background: The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods: SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results: Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion: SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration: https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.


Subject(s)
Interleukin-12 , Neoplasms , Animals , Mice , Humans , Cytokines , Healthy Volunteers , Neoplasms/drug therapy , Interferon-gamma , Interleukin-2 , Recombinant Proteins , Albumins/adverse effects , Tumor Microenvironment
18.
Front Immunol ; 15: 1343602, 2024.
Article in English | MEDLINE | ID: mdl-38455048

ABSTRACT

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/genetics , Leishmania infantum/genetics , Receptors, IgG/genetics , Interleukin-12 , Tumor Necrosis Factor-alpha , Nucleotides , Protein Isoforms , Genetic Variation , Immunoglobulin G
19.
Front Endocrinol (Lausanne) ; 15: 1293146, 2024.
Article in English | MEDLINE | ID: mdl-38505750

ABSTRACT

Introduction: Circulating cytokines were considered to play a critical role in the initiation and propagation of sarcopenia and frailty from observational studies. This study aimed to find the casual association between circulating cytokines and sarcopenia and frailty from a genetic perspective by two-sample Mendelian randomization (MR) analysis. Methods: Data for 41 circulating cytokines were extracted from the genome-wide association study dataset of 8,293 European participants. Inverse-variance weighted (IVW) method, MR-Egger, and weighted median method were applied to assess the relationship of circulating cytokines with the risk of aging-related syndromes and frailty. Furthermore, MR-Egger regression was used to indicate the directional pleiotropy, and Cochran's Q test was used to verify the potential heterogeneity. The "leave-one-out" method was applied to visualize whether there was a causal relationship affected by only one anomalous single-nucleotide polymorphisms. Results: Genetic predisposition to increasing levels of interleukin-10 (IL-10), IL-12, and vascular endothelial growth factor (VEGF) was associated with the higher risk of low hand grip strength according to the IVW method [R = 1.05, 95% CI = 1.01-1.10, P = 0.028, false discovery rate (FDR)-adjusted P = 1.000; OR = 1.03, 95% CI = 1.00-1.07, P = 0.042, FDR-adjusted P = 0.784; OR = 1.02, 95% CI = 1.00-1.05, P = 0.038, FDR-adjusted P = 0.567]. Furthermore, genetically determined higher macrophage colony-stimulating factors (M-CSFs) were associated with a lower presence of appendicular lean mass (OR = 1.01, 95% CI = 1.00-1.02, P = 0.003, FDR-adjusted P = 0.103). Monokine induced by interferon-γ (MIG) and tumor necrosis factor-beta (TNF-ß) were associated with a higher risk of frailty (OR = 1.03, 95% CI = 1.01-1.05, P < 0.0001, FDR-adjusted P = 0.012; OR = 1.01, 95% CI = 1.00-1.03, P = 0.013, FDR-adjusted P = 0.259). In this study, we did not find heterogeneity and horizontal pleiotropy between the circulating cytokines and the risk of frailty and sarcopenia. Conclusion: Genetic predisposition to assess IL-10, IL-12, and VEGF levels was associated with a higher risk of low hand grip strength and M-CSF with the presence of appendicular lean mass. The high levels of TNF-ß and MIG were associated with a higher risk of frailty. More studies will be required to explore the molecular biological mechanisms underlying the action of inflammatory factors.


Subject(s)
Frailty , Sarcopenia , Humans , Cytokines/genetics , Interleukin-10 , Vascular Endothelial Growth Factor A , Lymphotoxin-alpha , Sarcopenia/genetics , Frailty/genetics , Geroscience , Genome-Wide Association Study , Hand Strength , Interleukin-12 , Interferon-gamma , Genetic Predisposition to Disease
20.
Vestn Otorinolaringol ; 89(1): 64-72, 2024.
Article in Russian | MEDLINE | ID: mdl-38506028

ABSTRACT

Children's and adults' rhinosinusitis are two diseases that have both similarities and differences in anatomy, epidemiology, causes, pathogenesis, diagnosis and treatment. At the same rhinosinusitis is one of the most common in otorhinolaryngology's practice, both in children and adults. The of adults paranasal sinuses (PNS) anatomy differs from children's PNS anatomy. Although ostiomeatal complex occlusion is recognized as a major cause of poor ventilation and drainage of the adult paranasal sinuses, it does not have a strong effect on pediatric rhinosinusitis, but adenoids play a key role. Adenoids are bacteria and biofilms reservoirs that cause chronic refractory rhinosinusitis regardless of pharyngeal tonsil size. The prevalence of chronic rhinosinusitis (CRS) is lower in children than in adults. Diagnosis of children's rhinosinusitis is more difficult because nasal cavity endoscopic examination is performed rarely due to the occasional need of general anesthesia during the procedure. Moreover, it's necessary to take into account prevailing etiological role of viruses in ARS at children's age and chronic adenoiditis often accompanies pediatric CRS, which requires attention prescribing medical therapy as the basis of rhinosinusitis treatment. The DysheLORz based on Pelargonium sidoides roots is highly effective and safe for children's and adults ARS and CRS treatment, both as monotherapy and in combination with topical steroids and antibiotics. This herbal medicine immunomodulatory effect is mediated mainly by stimulating the production of TNF-α, IL-1, IL-12 and IFN-γ. It activates macrophages and improves their phagocytic activity. IL-12, together with TNF-α, enhances NK and cytotoxic CD8+ lymphocytes' activity against infected cells. IL-12 effect on Th1 lymphocytes maturation provides a link between innate and adaptive immunity. This is also increasing MCP-1, IP-10 and MIP-1ß chemokines synthesis and decreasing MIP-1α, ENA-78, GROα and IL-8 production in PNS and nasal mucosa. This leads to decrease of neutrophils chemotaxis to the inflammation site, and decline of serine proteases concentration (neutrophils main enzymes), that increases mucous membrane epithelial barrier permeability, reducing bacterial infections risk. Additionally, Pelargonium sidoides increases epithelial cells beating cilia frequency and inhibits hemagglutinin and neuraminidase present on influenza virus surface. The drug increases antimicrobial peptides production as defensins, human neutrophil peptides (HNP) and bactericidal permeability-increasing protein (BPI), which is also important for rapid inflammation regression in rhinosinusitis. It causes bacterial adhesion to epithelial cells inhibition, phagocytosis stimulation, nitric oxide (NO) release and oxidative burst. The medicine had a direct effect on Streptococcus pneumoniae, Staphylococcus aureus, Neisseria, Moraxella catarrhalis and Haemophilus influenza. Based on these data, it is possible to explain the high effectiveness and safety of the drugs based on Pelargonium sidoides in ENT organs inflammation treatment, for both adults and children over 1 year old.


Subject(s)
Rhinitis , Rhinosinusitis , Sinusitis , Adult , Humans , Child , Infant , Rhinitis/therapy , Rhinitis/drug therapy , Tumor Necrosis Factor-alpha , Sinusitis/therapy , Sinusitis/drug therapy , Nasal Mucosa , Inflammation , Interleukin-12/therapeutic use , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...