Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 119(35): e2123267119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994660

ABSTRACT

The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.


Subject(s)
Interleukin-33 , Placenta , Placentation , Uterus , Animals , Decidua/blood supply , Decidua/cytology , Decidua/growth & development , Decidua/immunology , Female , Fetus/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/deficiency , Interleukin-33/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Placenta/immunology , Placenta/metabolism , Pregnancy , Uterus/blood supply , Uterus/growth & development , Uterus/immunology , Uterus/metabolism
2.
Cell Physiol Biochem ; 56(3): 270-281, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35712829

ABSTRACT

BACKGROUND/AIMS: Interleukin 33 (IL-33) plays a significant role in immunity but its role in bone physiology and periodontitis needs to be further investigated. The aim of this study was to decipher the contribution of IL-33 to bone homeostasis under physiological conditions, and to alveolar bone loss associated with experimental periodontitis (EP) in IL-33 knockout (KO) mice and their wildtype (WT) littermates. METHODS: The bone phenotype of IL-33 KO mice was studied in the maxilla, femur, and fifth lumbar vertebra by micro-computed tomography (micro-CT). EP was induced by a ligature soaked with the periopathogen Porphyromonas gingivalis (Pg) around a maxillary molar. Alveolar bone loss was quantified by micro-CT. The resorption parameters were assessed via toluidine blue staining on maxillary sections. In vitro osteoclastic differentiation assays using bone marrow cells were performed with or without lipopolysaccharide from Pg (LPS-Pg). RESULTS: First, we showed that under physiological conditions, IL-33 deficiency increased the trabecular bone volume/total volume ratio (BV/TV) of the maxillary bone in male and female mice, but not in the femur and fifth lumbar vertebra, suggesting an osteoprotective role for IL-33 in a site-dependent manner. The severity of EP induced by Pg-soaked ligature was increased in IL-33 KO mice but in female mice only, through an increase in the number of osteoclasts. Moreover, osteoclastic differentiation from bone marrow osteoclast progenitors in IL-33-deficient female mice is enhanced in the presence of LPS-Pg. CONCLUSION: Taken together, our data demonstrate that IL-33 plays a sex-dependent osteoprotective role both under physiological conditions and in EP with Pg.


Subject(s)
Alveolar Bone Loss , Interleukin-33 , Periodontitis , Alveolar Bone Loss/microbiology , Animals , Female , Interleukin-33/deficiency , Interleukin-33/genetics , Lipopolysaccharides , Male , Mice , Mice, Knockout , Osteoclasts , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , X-Ray Microtomography
3.
Cell Mol Life Sci ; 79(3): 173, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35244789

ABSTRACT

During embryo implantation, apoptosis is inevitable. These apoptotic cells (ACs) are removed by efferocytosis, in which macrophages are filled with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to the relationship between efferocytosis-related metabolism and the immune behavior of decidual macrophages (dMΦs) and its effect on pregnancy outcome. Here, we report positive feedback of IL-33/ST2-AXL-efferocytosis leading to pregnancy failure through metabolic reprogramming of dMΦs. We compared the serum levels of IL-33 and sST2, along with IL-33 and ST2, efferocytosis and metabolism of dMΦs, from patients with normal pregnancies and unexplained recurrent pregnancy loss (RPL). We revealed disruption of the IL-33/ST2 axis, increased apoptotic cells and elevated efferocytosis of dMΦs from patients with RPL. The dMΦs that engulfed many apoptotic cells secreted more sST2 and less TGF-ß, which polarized dMΦs toward the M1 phenotype. Moreover, the elevated sST2 biased the efferocytosis-related metabolism of RPL dMΦs toward oxidative phosphorylation and exacerbated the disruption of the IL-33/ST2 signaling pathway. Metabolic disorders also lead to dysfunction of efferocytosis, resulting in more uncleared apoptotic cells and secondary necrosis. We also screened the efferocytotic molecule AXL regulated by IL-33/ST2. This positive feedback axis of IL-33/ST2-AXL-efferocytosis led to pregnancy failure. IL-33 knockout mice demonstrated poor pregnancy outcomes, and exogenous supplementation with mouse IL-33 reduced the embryo losses. These findings highlight a new etiological mechanism whereby dMΦs leverage immunometabolism for homeostasis of the microenvironment at the maternal-fetal interface.


Subject(s)
Apoptosis , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Abortion, Spontaneous/immunology , Abortion, Spontaneous/pathology , Animals , Decidua/cytology , Female , Humans , Interleukin-1 Receptor-Like 1 Protein/blood , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33/blood , Interleukin-33/deficiency , Interleukin-33/genetics , Macrophages/cytology , Macrophages/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oligomycins/pharmacology , Oxidative Phosphorylation , Pregnancy , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Axl Receptor Tyrosine Kinase
4.
Nat Commun ; 12(1): 4734, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354077

ABSTRACT

The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Subject(s)
Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming Techniques/methods , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Female , Genetic Vectors , Interleukin-33/deficiency , Interleukin-33/genetics , Interleukin-33/immunology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Lymphocytic choriomeningitis virus/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
5.
Respir Res ; 22(1): 150, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33992109

ABSTRACT

BACKGROUND: IL-33, which is known to induce type 2 immune responses via group 2 innate lymphoid cells, has been reported to contribute to neutrophilic airway inflammation in chronic obstructive pulmonary disease. However, its role in the pathogenesis of emphysema remains unclear. METHODS: We determined the role of interleukin (IL)-33 in the development of emphysema using porcine pancreas elastase (PPE) and cigarette smoke extract (CSE) in mice. First, IL-33-/- mice and wild-type (WT) mice were given PPE intratracheally. The numbers of inflammatory cells, and the levels of cytokines and chemokines in the bronchoalveolar lavage (BAL) fluid and lung homogenates, were analyzed; quantitative morphometry of lung sections was also performed. Second, mice received CSE by intratracheal instillation. Quantitative morphometry of lung sections was then performed again. RESULTS: Intratracheal instillation of PPE induced emphysematous changes and increased IL-33 levels in the lungs. Compared to WT mice, IL-33-/- mice showed significantly greater PPE-induced emphysematous changes. No differences were observed between IL-33-/- and WT mice in the numbers of macrophages or neutrophils in BAL fluid. The levels of hepatocyte growth factor were lower in the BAL fluid of PPE-treated IL-33-/- mice than WT mice. IL-33-/- mice also showed significantly greater emphysematous changes in the lungs, compared to WT mice, following intratracheal instillation of CSE. CONCLUSION: These observations suggest that loss of IL-33 promotes the development of emphysema and may be potentially harmful to patients with COPD.


Subject(s)
Interleukin-33/deficiency , Lung/metabolism , Pancreatic Elastase , Pneumonia/metabolism , Pulmonary Emphysema/metabolism , Smoke , Tobacco Products , Animals , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Female , Hepatocyte Growth Factor/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-33/genetics , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/etiology , Pneumonia/genetics , Pneumonia/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/genetics , Pulmonary Emphysema/pathology
6.
Eur J Immunol ; 51(1): 76-90, 2021 01.
Article in English | MEDLINE | ID: mdl-32700362

ABSTRACT

Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33-/- mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.


Subject(s)
Interleukin-33/metabolism , Lymphocytic Choriomeningitis/immunology , Acute Disease , Adaptive Immunity , Animals , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Endothelial Cells/immunology , Fibroblasts/immunology , Homeostasis , Humans , Immunity, Innate , Interleukin-33/deficiency , Interleukin-33/genetics , Lymph Nodes/immunology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological
7.
J Clin Invest ; 130(10): 5397-5412, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32644975

ABSTRACT

Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.


Subject(s)
Graft Rejection/immunology , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Interleukin-33/immunology , Macrophages/immunology , Alarmins/immunology , Allografts , Animals , Child , Disease Models, Animal , Graft Rejection/etiology , Graft Survival/immunology , Humans , Interleukin-33/administration & dosage , Interleukin-33/deficiency , Interleukin-33/genetics , Macrophage Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Myocardium/immunology , Myocardium/pathology , Up-Regulation
8.
Sci Rep ; 10(1): 6451, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296080

ABSTRACT

Current studies addressing the influence of interleukin-33 or its receptor (IL-33R/ST2) on development of atopic dermatitis-like inflammation in mice have reported conflicting results. We compared the response in single- and double-deficient IL-33-/-/ST2-/- C57BL/6J BomTac mice in the well-established calcipotriol-induced model of atopic dermatitis. All genotypes (groups of up to 14 mice) developed atopic dermatitis-like inflammation yet we observed no biologically relevant difference between groups in gross anatomy or ear thickness. Moreover, histological examination of skin revealed no differences in mononuclear leukocyte and granulocyte infiltration nor Th2 cytokine levels (IL-4 and IL-13). Finally, skin CD45+ cells and CD3+ cells were found at similar densities across all groups. Our findings indicate that lack of interleukin-33 and its receptor ST2 does not prevent the development of AD-like skin inflammation.


Subject(s)
Dermatitis, Atopic/immunology , Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-33/deficiency , Signal Transduction/immunology , Animals , Calcitriol/analogs & derivatives , Calcitriol/immunology , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Disease Models, Animal , Female , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-33/genetics , Interleukin-33/immunology , Male , Mice , Mice, Knockout , Signal Transduction/genetics , Skin/drug effects , Skin/immunology , Skin/pathology
9.
J Neuroinflammation ; 16(1): 251, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796062

ABSTRACT

BACKGROUND: Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. METHODS: RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33-/- mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. RESULTS: RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1ß, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33-/- mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1ß and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33-/- mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33-/- mice compared to that in WT RD mice. IL-33-/- mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33-/- mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33-/- bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1ß and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. CONCLUSION: IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.


Subject(s)
Inflammation Mediators/metabolism , Interleukin-33/deficiency , Retinal Degeneration/metabolism , Retinal Detachment/metabolism , Severity of Illness Index , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Degeneration/pathology , Retinal Detachment/pathology
10.
J Pharmacol Exp Ther ; 370(3): 437-446, 2019 09.
Article in English | MEDLINE | ID: mdl-31248979

ABSTRACT

Multiple sclerosis is a neurodegenerative disease affecting predominantly female patients between 20 and 45 years of age. We previously reported the significant contribution of mouse mast cell protease 4 (mMCP-4) in the synthesis of endothelin-1 (ET-1) in healthy mice and in a murine model of experimental autoimmune encephalomyelitis (EAE). In the current study, the cardiovascular effects of ET-1 and big endothelin-1 (big-ET-1) administered systemically or intrathecally were assessed in the early preclinical phase of EAE in telemetry instrumented/conscious mice. Chymase-specific enzymatic activity was also measured in the lung, brain, and mast cell extracts in vitro. Finally, the impact of EAE immunization was studied on the pulmonary and brain mRNA expression of different genes of the endothelin pathway, interleukin-33 (IL-33), and monitoring of immunoreactive tumor necrosis factor-α (TNF-α). Systemically or intrathecally administered big-ET-1 triggered increases in blood pressure in conscious mice. One week post-EAE, the pressor responses to big-ET-1 were potentiated in wild-type (WT) mice but not in mMCP-4 knockout (KO) mice. EAE triggered mMCP-4-specific activity in cerebral homogenates and peritoneal mast cells. Enhanced pulmonary, but not cerebral preproendothelin-1 and IL-33 mRNA were found in KO mice and further increased 1 week post-EAE immunization, but not in WT animals. Finally, TNF-α levels were also increased in serum from mMCP-4 KO mice, but not WT, 1 week post-EAE. Our study suggests that mMCP-4 activity is enhanced both centrally and systemically in a mouse model of EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelin-1/administration & dosage , Endothelin-1/pharmacology , Serine Endopeptidases/metabolism , Animals , Brain/drug effects , Brain/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Gene Knockout Techniques , Hemodynamics/drug effects , Injections, Spinal , Interleukin-33/deficiency , Interleukin-33/genetics , Lung/drug effects , Lung/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Up-Regulation/drug effects
11.
J Immunol ; 202(4): 1145-1152, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30642984

ABSTRACT

The cytokine IL-33 is a well-established inducer of Th2 responses. However, roles for IL-33 in promoting CD8, Th1, and T regulatory cell responses have also emerged. In this study, the role of IL-33 as a regulator of particulate vaccine adjuvant-induced Ag-specific cellular immunity was investigated. We found that polymeric nanoparticles surpassed alum in their ability to enhance Ag-specific CD8 and Th1 responses. IL-33 was a potent negative regulator of both CD8+ T cell and Th1 responses following i.m. vaccination with Ag and nanoparticles, whereas the cytokine was required for the nanoparticle enhancement in Ag-specific IL-10. In contrast to the effect on cellular immunity, Ab responses were comparable between vaccinated wild-type and IL-33-deficient mice. IL-33 did not compromise alum-induced adaptive cellular immunity after i.m. vaccination. These data suggest that IL-33 attenuates the induction of cellular immune responses by nanoparticulate adjuvants and should be considered in the rational design of vaccines targeting enhanced CD8 and Th1 responses.


Subject(s)
Antigens/immunology , Immunity, Cellular/immunology , Interleukin-33/immunology , Vaccines/immunology , Animals , Antigens/administration & dosage , Injections, Intramuscular , Interleukin-33/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Vaccination , Vaccines/administration & dosage
12.
Mol Immunol ; 101: 550-563, 2018 09.
Article in English | MEDLINE | ID: mdl-30173119

ABSTRACT

Interleukin (IL)-33, a member of the IL-1 cytokine family, is highly expressed in central nervous system (CNS), suggesting its potential role in CNS. Although some studies have focused on the role of IL-33 in multiple sclerosis (MS) / experimental autoimmune encephalomyelitis (EAE), an autoimmune disease characterized by demyelination and axonal damage in CNS, the exact role of IL-33 in MS/EAE remains unclear and controversial. Here, we used IL-33 knockout mice to clarify the role of endogenous IL-33 in EAE by simultaneously eliminating its role as a nuclear transcription factor and an extracellular cytokine. We found that the clinical score in IL-33 knockout EAE mice was higher accompanied by more severe demyelination compared with the wild-type (WT) EAE mice. As for the main immune cells participating in EAE in IL-33 knockout mice, pathogenic effector T cells increased both in peripheral immune organs and CNS, while CD4+FOXP3+ regulatory T cells decreased in spleen and lymph nodes, Th2 cells and natural killer (NK) cells decreased in CNS. Additionally, the populations of microglia/macrophages and CD11C+CD11B+ dendritic cells (DCs) increased in CNS of IL-33 knockout mice with EAE, among which iNOS-producing microglia/macrophages increased. Moreover, resident astrocytes/microglia were more activated in IL-33 knockout mice with EAE. In vitro, after blocking the IL-33, the proliferation of primary astrocytes, the production of MCP-1/CCL2 and TNF-α by astrocytes, and the production of TNF-α by primary microglia stimulated by the homogenate of the peak stage of EAE were increased. Our results indicate that IL-33 plays a protective role in EAE and exerts extensive influences on multiple immune cells and neural cells involved in EAE.


Subject(s)
Disease Progression , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-33/deficiency , Neuroglia/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Animals , Astrocytes/metabolism , Cytokines , Demyelinating Diseases/pathology , Dendritic Cells/metabolism , Female , Killer Cells, Natural/immunology , Lymph Nodes/pathology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Models, Biological , Nitric Oxide Synthase Type II/metabolism , Oligodendroglia/metabolism , Spinal Cord/pathology , Spleen/pathology , Th2 Cells/immunology
13.
Biochemistry (Mosc) ; 83(1): 13-25, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29534664

ABSTRACT

Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and plays an important role in modulating immune system by inducing Th2 immune response via the ST2 membrane receptor. Epithelial cells are the major producers of IL-33. However, IL-33 is also secreted by other cells, e.g., bone marrow cells, dendritic cells, macrophages, and mast cells. IL-33 targets a broad range of cell types bearing the ST2 surface receptor. Many ST2-positive cells, such as Th2 cells, mast cells, basophils, and eosinophils, are involved in the development of allergic bronchial asthma (BA). This suggests that IL-33 directly participates in BA pathogenesis. Currently, the role of IL-33 in pathogenesis of inflammatory disorders, including BA, has been extensively investigated using clinical samples collected from patients, as well as asthma animal models. In particular, numerous studies on blocking IL-33 and its receptor by monoclonal antibodies in asthma mouse model have been performed over the last several years; IL-33- and ST2-deficient transgenic mice have also been generated. In this review, we summarized and analyzed the data on the role of IL-33 in BA pathogenesis and the prospects for creating new treatments for BA.


Subject(s)
Asthma/immunology , Asthma/physiopathology , Interleukin-33/immunology , Animals , Antibodies, Monoclonal/immunology , Asthma/genetics , Asthma/pathology , Humans , Interleukin-33/antagonists & inhibitors , Interleukin-33/deficiency , Interleukin-33/genetics
14.
J Am Soc Nephrol ; 29(4): 1272-1288, 2018 04.
Article in English | MEDLINE | ID: mdl-29436517

ABSTRACT

Inflammation is a prominent feature of ischemia-reperfusion injury (IRI), which is characterized by leukocyte infiltration and renal tubular injury. However, signals that initiate these events remain poorly understood. We examined the role of the nuclear alarmin IL-33 in tissue injury and innate immune response triggered by experimental kidney ischemia-reperfusion. In wild-type mice, we found that IL-33 was constitutively expressed throughout the kidney in peritubular and periglomerular spaces, mainly by microvascular endothelial cells, from which it was released immediately during IRI. Compared with wild-type mice, mice lacking IL-33 (IL-33Gt/Gt) exhibited reductions in early tubular cell injury and subsequent renal infiltration of IFN-γ/IL-17A-producing neutrophils, with preservation of renal functions. This protection associated with decreased renal recruitment of myeloid dendritic cells, natural killer (NK) cells, and invariant natural killer T (iNKT) cells, the latter of which were reported as deleterious in IRI. Increases in the level of circulating IL-12, a key IL-33 cofactor, and the expression of ST2, an IL-33-specific receptor, on the surface of iNKT cells preceded the IL-33- and iNKT cell-dependent phase of neutrophil infiltration. Furthermore, IL-33 directly targeted iNKT cells in vitro, inducing IFN-γ and IL-17A production. We propose that endogenous IL-33 is released as an alarmin and contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Our findings show a novel molecular mediator contributing to innate immune cell recruitment induced by renal ischemia-reperfusion and may provide therapeutic insights into AKI associated with renal transplantation.


Subject(s)
Alarmins/physiology , Interleukin-33/physiology , Kidney/blood supply , Reperfusion Injury/metabolism , Alarmins/deficiency , Alarmins/genetics , Animals , Cytokines/biosynthesis , Cytokines/genetics , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Immunity, Innate , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-1 Receptor-Like 1 Protein/physiology , Interleukin-12/blood , Interleukin-17/biosynthesis , Interleukin-17/genetics , Interleukin-33/biosynthesis , Interleukin-33/deficiency , Interleukin-33/genetics , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Activation , Neutrophils/immunology , Reperfusion Injury/immunology
15.
Am J Physiol Renal Physiol ; 314(3): F356-F366, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29070568

ABSTRACT

The effect of IL-33 deficiency on acute kidney injury (AKI) and cancer growth in a 4-wk model of cisplatin-induced AKI in mice with cancer was determined. Mice were injected subcutaneously with murine lung cancer cells. Ten days later, cisplatin (10 mg·kg-¹·wk-¹) was administered weekly for 4 wk. The increase in kidney IL-33 preceded the AKI and tubular injury, suggesting that IL-33 may play a causative role. However, the increase in serum creatinine, blood urea nitrogen, serum neutrophil gelatinase-associated lipoprotein, acute tubular necrosis, and apoptosis scores in the kidney in cisplatin-induced AKI was the same in wild-type and IL-33-deficient mice. There was an increase in kidney expression of pro-inflammatory cytokines CXCL1 and TNF-α, known mediators of cisplatin-induced AKI, in IL-33-deficient mice. Surprisingly, tumor weight, tumor volume, and tumor growth were significantly decreased in IL-33-deficient mice, and the effect of cisplatin on tumors was enhanced in IL-33-deficient mice. As serum IL-33 was increased in cisplatin-induced AKI in mice, it was determined whether serum IL-33 is an early biomarker of AKI in patients undergoing cardiac surgery. Immediate postoperative serum IL-33 concentrations were higher in matched AKI cases compared with non-AKI controls. In conclusion, even though the cancer grows slower in IL-33-deficient mice, the data that IL-33 deficiency does not protect against AKI in a clinically relevant model suggest that IL-33 inhibition may not be useful to attenuate AKI in patients with cancer. However, serum IL-33 may serve as a biomarker of AKI.


Subject(s)
Acute Kidney Injury/chemically induced , Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , Cisplatin/toxicity , Interleukin-33/deficiency , Kidney/drug effects , Lung Neoplasms/drug therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Biomarkers/blood , Cardiac Surgical Procedures/adverse effects , Case-Control Studies , Female , Humans , Interleukin-33/blood , Interleukin-33/genetics , Kidney/metabolism , Kidney/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Time Factors , Tumor Burden/drug effects
16.
Mediators Inflamm ; 2017: 1359064, 2017.
Article in English | MEDLINE | ID: mdl-28607531

ABSTRACT

The alarmin IL-33 has been described to be upregulated in human and murine viral hepatitis. However, the role of endogenous IL-33 in viral hepatitis remains obscure. We aimed to decipher its function by infecting IL-33-deficient mice (IL-33 KO) and their wild-type (WT) littermates with pathogenic mouse hepatitis virus (L2-MHV3). The IL-33 KO mice were more sensitive to L2-MHV3 infection exhibiting higher levels of AST/ALT, higher tissue damage, significant weight loss, and earlier death. An increased depletion of B and T lymphocytes, NKT cells, dendritic cells, and macrophages was observed 48 h postinfection (PI) in IL-33 KO mice than that in WT mice. In contrast, a massive influx of neutrophils was observed in IL-33 KO mice at 48 h PI. A transcriptomic study of inflammatory and cell-signaling genes revealed the overexpression of IL-6, TNFα, and several chemokines involved in recruitment/activation of neutrophils (CXCL2, CXCL5, CCL2, and CCL6) at 72 h PI in IL-33 KO mice. However, the IFNγ was strongly induced in WT mice with less profound expression in IL-33 KO mice demonstrating that endogenous IL-33 regulated IFNγ expression during L2-MHV3 hepatitis. In conclusion, we demonstrated that endogenous IL-33 had multifaceted immunoregulatory effect during viral hepatitis via induction of IFNγ, survival effect on immune cells, and infiltration of neutrophils in the liver.


Subject(s)
Hepatitis/immunology , Hepatitis/metabolism , Interleukin-33/metabolism , Liver/metabolism , Neutrophils/metabolism , Animals , B-Lymphocytes/metabolism , Chemokine CCL2/metabolism , Chemokine CXCL2/metabolism , Chemokine CXCL5/metabolism , Chemokines, CC/metabolism , Interferon-gamma/metabolism , Interleukin-33/deficiency , Interleukin-6/metabolism , Mice , Mice, Knockout , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29379874

ABSTRACT

Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33-/- mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33-/- mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33-/- mice after the EPM. Altered c-Fos immunoreactivity in Il33-/- mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33-/- mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.


Subject(s)
Behavior, Animal/physiology , Interleukin-33/deficiency , Mice, Knockout/psychology , Animals , Anxiety/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Interleukin-33/genetics , Male , Mice, Inbred C57BL , Mice, Knockout/metabolism , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Proto-Oncogene Proteins c-fos/metabolism , Recognition, Psychology/physiology
18.
Am J Physiol Gastrointest Liver Physiol ; 311(2): G313-23, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27340126

ABSTRACT

The IL-33/ST2 axis plays a protective role in T-cell-mediated hepatitis, but little is known about the functional impact of endogenous IL-33 on liver immunopathology. We used IL-33-deficient mice to investigate the functional effect of endogenous IL-33 in concanavalin A (Con A)-hepatitis. IL-33(-/-) mice displayed more severe Con A liver injury than wild-type (WT) mice, consistent with a hepatoprotective effect of IL-33. The more severe hepatic injury in IL-33(-/-) mice was associated with significantly higher levels of TNF-α and IL-1ß and a larger number of NK cells infiltrating the liver. The expression of Th2 cytokines (IL-4, IL-10) and IL-17 was not significantly varied between WT and IL-33(-/-) mice following Con A-hepatitis. The percentage of CD25(+) NK cells was significantly higher in the livers of IL-33(-/-) mice than in WT mice in association with upregulated expression of CXCR3 in the liver. Regulatory T cells (Treg cells) strongly infiltrated the liver in both WT and IL-33(-/-) mice, but Con A treatment increased their membrane expression of ST2 and CD25 only in WT mice. In vitro, IL-33 had a significant survival effect, increasing the total number of splenocytes, including B cells, CD4(+) and CD8(+) T cells, and the frequency of ST2(+) Treg cells. In conclusion, IL-33 acts as a potent immune modulator protecting the liver through activation of ST2(+) Treg cells and control of NK cells.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Hepatitis/immunology , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-33/deficiency , Killer Cells, Natural/immunology , Liver/innervation , Lymphocyte Activation , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Chemotaxis, Leukocyte , Concanavalin A , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Genetic Predisposition to Disease , Hepatitis/metabolism , Hepatitis/pathology , Hepatitis/prevention & control , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Killer Cells, Natural/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction , T-Lymphocytes, Regulatory/metabolism
19.
J Immunol ; 196(9): 3559-69, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27001956

ABSTRACT

Protease activity of papain, a plant-derived occupational allergen homologous to mite major allergens, is essential to IgE/IgG1 production and lung eosinophilia induced by intranasal papain administration in mice, and IL-33 contributes to these responses. In this work, we investigate skin and Ab responses induced by s.c. papain administration into ear lobes and responses induced by subsequent airway challenge with papain. Subcutaneous papain injection induced swelling associated with increased epidermal thickness, dermal inflammation, serum IgE/IgG1 responses, and Th2 cytokine production in draining lymph node cells restimulated in vitro. These responses were markedly less upon s.c. administration of protease inhibitor-treated papain. Results obtained by using mast cell-deficient mice and reconstitution of tissue mast cells suggested the contribution of mast cells to papain-specific IgE/IgG1 responses and eosinophil infiltration. The responses were equivalent between wild-type and IL-33(-/-) mice. After the subsequent airway challenge, the s.c. presensitized wild-type mice showed more severe lung eosinophilia than those without the presensitization. The presensitized IL-33(-/-) mice showed modest lung eosinophilia, which was absent without the presensitization, but its severity and IgE boost by the airway challenge were markedly less than the presensitized wild-type mice, in which protease activity of inhaled papain contributed to the responses. The results suggest that mechanisms for the protease-dependent sensitization differ between skin and airway and that cooperation of mast cell-dependent, IL-33-independent initial sensitization via skin and protease-induced, IL-33-mediated mechanism in re-exposure via airway to protease allergens maximizes the magnitude of the transition from skin inflammation to asthma in natural history of progression of allergic diseases.


Subject(s)
Allergens/administration & dosage , Allergens/immunology , Hypersensitivity/immunology , Interleukin-33/immunology , Mast Cells/immunology , Nasal Absorption , Peptide Hydrolases/immunology , Subcutaneous Absorption , Animals , Asthma , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/pathology , Eosinophils/immunology , Hypersensitivity/pathology , Immunoglobulin E/blood , Immunoglobulin G/blood , Inflammation , Interleukin-33/deficiency , Lung/immunology , Mice , Papain/administration & dosage , Papain/immunology , Peptide Hydrolases/administration & dosage , Pulmonary Eosinophilia/immunology , Pulmonary Eosinophilia/pathology , Skin/immunology , Skin/pathology , Th2 Cells/immunology
20.
J Exp Med ; 213(2): 189-207, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26755704

ABSTRACT

Age-related macular degeneration (AMD), a leading cause of vision impairment in the ageing population, is characterized by irreversible loss of retinal pigment epithelial (RPE) cells and photoreceptors and can be associated with choroidal neovascularization. Mononuclear phagocytes are often present in AMD lesions, but the processes that direct myeloid cell recruitment remain unclear. Here, we identify IL-33 as a key regulator of inflammation and photoreceptor degeneration after retina stress or injury. IL-33(+) Müller cells were more abundant and IL-33 cytokine was elevated in advanced AMD cases compared with age-matched controls with no AMD. In rodents, retina stress resulted in release of bioactive IL-33 that in turn increased inflammatory chemokine and cytokine expression in activated Müller cells. Deletion of ST2, the IL-33 receptor α chain, or treatment with a soluble IL-33 decoy receptor significantly reduced release of inflammatory mediators from Müller cells, inhibited accumulation of mononuclear phagocytes in the outer retina, and protected photoreceptor rods and cones after a retina insult. This study demonstrates a central role for IL-33 in regulating mononuclear phagocyte recruitment to the photoreceptor layer and positions IL-33 signaling as a potential therapeutic target in macular degenerative diseases.


Subject(s)
Immunity, Innate , Interleukin-33/metabolism , Macular Degeneration/immunology , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cell Nucleus/immunology , Cytokines/metabolism , Ependymoglial Cells/immunology , Ependymoglial Cells/pathology , Female , Humans , In Vitro Techniques , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/chemistry , Interleukin-33/deficiency , Interleukin-33/genetics , Macula Lutea/immunology , Macula Lutea/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational , Rats , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL